Skip to main content
Log in

Genetics of Depressive Disorders: Candidate Genes and Genome-Wide Association Studies

  • REVIEWS AND THEORETICAL ARTICLES
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

The search for molecular genetic markers of depression has been going on for more than two decades, and it began with molecular studies of the genes of the neurotransmitter systems, primarily serotonin and dopamine. However, for most genes, the results of such studies remain contradictory. In the last decade, a new approach has been used to study the genetics of multifactorial diseases—a genome-wide search for associations. This method made it possible to supplement the list of potential genetic risk factors for depression with new genes that require additional research. The review describes two different approaches to the study of the genetics of depression, as well as current problems and recent advances in this field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Kessing, L.V. and Bukh, J.D., The clinical relevance of qualitatively distinct subtypes of depression, World Psychiatry, 2017, vol. 16, no. 3, pp. 318—319. https://doi.org/10.1002/wps.20461

    Article  PubMed  PubMed Central  Google Scholar 

  2. In Depression: The Treatment and Management of Depression in Adults, Leicester (UK), 2010, updated ed.

  3. Sullivan, P.F., Neale, M.C., and Kendler, K.S., Genetic epidemiology of major depression: review and meta-analysis, Am. J. Psychiatry, 2000, vol. 157, no. 10, pp. 1552—1562. https://doi.org/10.1176/appi.ajp.157.10.1552

    Article  CAS  PubMed  Google Scholar 

  4. Caspi, A., Sugden, K., Moffitt, T.E., et al., Influence of life stress on depression: moderation by a polymorphism in the 5-HTT gene, Science, 2003, vol. 301, no. 5631, pp. 386—389. https://doi.org/10.1126/science.1083968

    Article  CAS  PubMed  Google Scholar 

  5. Heils, A., Teufel, A., Petri, S., et al., Allelic variation of human serotonin transporter gene expression, J. Neurochem., 1996, vol. 66, no. 6, pp. 2621—2624. https://doi.org/10.1046/j.1471-4159.1996.66062621.x

    Article  CAS  PubMed  Google Scholar 

  6. Lesch, K.P., Bengel, D., Heils, A., et al., Association of anxiety-related traits with a polymorphism in the serotonin transporter gene regulatory region, Science, 1996, vol. 274, no. 5292, pp. 1527—1531. https://doi.org/10.1126/science.274.5292.1527

    Article  CAS  PubMed  Google Scholar 

  7. Karg, K., Burmeister, M., Shedden, K., et al., The serotonin transporter promoter variant (5-HTTLPR), stress, and depression meta-analysis revisited: evidence of genetic moderation, Arch. Gen. Psychiatry, 2011, vol. 68, no. 5, pp. 444—454. https://doi.org/10.1001/archgenpsychiatry.2010.189

    Article  PubMed  PubMed Central  Google Scholar 

  8. Oo, K.Z., Aung, Y.K., Jenkins, M.A., et al., Associations of 5HTTLPR polymorphism with major depressive disorder and alcohol dependence: a systematic review and meta-analysis, Aust. N. Z. J. Psychiatry, 2016, vol. 50, no. 9, pp. 842—857. https://doi.org/10.1177/0004867416637920

    Article  PubMed  Google Scholar 

  9. Risch, N., Herrell, R., Lehner, T., et al., Interaction between the serotonin transporter gene (5-HTTLPR), stressful life events, and risk of depression a meta-analysis, Jama-J.Am. Med. Assoc., 2009, vol. 301, no. 23, pp. 2462—2471. https://doi.org/10.1001/jama.2009.878

    Article  CAS  Google Scholar 

  10. Munafo, M.R., Durrant, C., Lewis, G., et al., Gene × environment interactions at the serotonin transporter locus, Biol. Psychiatry, 2009, vol. 65, no. 3, pp. 211—219. https://doi.org/10.1016/j.biopsych.2008.06.009

    Article  CAS  PubMed  Google Scholar 

  11. Culverhouse, R.C., Saccone, N.L., Horton, A.C., et al., Collaborative meta-analysis finds no evidence of a strong interaction between stress and 5-HTTLPR genotype contributing to the development of depression, Mol. Psychiatry, 2018, vol. 23, no. 1, pp. 133—142. https://doi.org/10.1038/mp.2017.44

    Article  CAS  PubMed  Google Scholar 

  12. Hu, X.Z., Lipsky, R.H., Zhu, G., et al., Serotonin transporter promoter gain-of-function genotypes are linked to obsessive-compulsive disorder, Am. J. Hum. Genet., 2006, vol. 78, no. 5, pp. 815—826. https://doi.org/10.1086/503850

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Chang, C.C., Chang, H.A., Fang, W.H., et al., Gender-specific association between serotonin transporter polymorphisms (5-HTTLPR and rs25531) and neuroticism, anxiety and depression in well-defined healthy Han Chinese, J. Affective Disord., 2017, vol. 207, pp. 422—428. https://doi.org/10.1016/j.jad.2016.08.055

    Article  CAS  Google Scholar 

  14. Kimbrel, N.A., Morissette, S.B., Meyer, E.C., et al., Effect of the 5-HTTLPR polymorphism on posttraumatic stress disorder, depression, anxiety, and quality of life among Iraq and Afghanistan veterans, Anxiety Stress Coping, 2015, vol. 28, no. 4, pp. 456—466. https://doi.org/10.1080/10615806.2014.973862

    Article  PubMed  Google Scholar 

  15. Telch, M.J., Beevers, C.G., Rosenfield, D., et al., 5‑HTTLPR genotype potentiates the effects of war zone stressors on the emergence of PTSD, depressive and anxiety symptoms in soldiers deployed to Iraq, World Psychiatry, 2015, vol. 14, no. 2, pp. 198—206. https://doi.org/10.1002/wps.20215

    Article  PubMed  PubMed Central  Google Scholar 

  16. Lemonde, S., Turecki, G., Bakish, D., et al., Impaired repression at a 5-hydroxytryptamine 1A receptor gene polymorphism associated with major depression and suicide, J. Neurosci., 2003, vol. 23, no. 25, pp. 8788—8799. https://doi.org/10.1523/JNEUROSCI.23-25-08788.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Czesak, M., Lemonde, S., Peterson, E.A., et al., Cell-specific repressor or enhancer activities of Deaf-1 at a serotonin 1A receptor gene polymorphism, J. Neurosci., 2006, vol. 26, no. 6, pp. 1864—1871. https://doi.org/10.1523/JNEUROSCI.2643-05.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lenze, E.J., Shardell, M., Ferrell, R.E., et al., Association of serotonin-1A and 2A receptor promoter polymorphisms with depressive symptoms and functional recovery in elderly persons after hip fracture, J. Affective Disord., 2008, vol. 111, no. 1, pp. 61—66. https://doi.org/10.1016/j.jad.2008.02.005

    Article  CAS  Google Scholar 

  19. Molina, E., Cervilla, J., Rivera, M., et al., Polymorphic variation at the serotonin 1-A receptor gene is associated with comorbid depression and generalized anxiety, Psychiatr. Genet., 2011, vol. 21, no. 4, pp. 195—201. https://doi.org/10.1097/YPG.0b013e3283457a48

    Article  PubMed  Google Scholar 

  20. Jin, C., Xu, W., Yuan, J., et al., Meta-analysis of association between the –1438A/G (rs6311) polymorphism of the serotonin 2A receptor gene and major depressive disorder, Neurol. Res., 2013, vol. 35, no. 1, pp. 7—14. https://doi.org/10.1179/1743132812Y.0000000111

    Article  CAS  PubMed  Google Scholar 

  21. Zhao, X., Sun, L., Sun, Y.H., et al., Association of HTR2A T102C and A-1438G polymorphisms with susceptibility to major depressive disorder: a meta-analysis, Neurol. Sci., 2014, vol. 35, no. 12, pp. 1857—1866. https://doi.org/10.1007/s10072-014-1970-7

    Article  PubMed  Google Scholar 

  22. Huang, Y.Y., Grailhe, R., Arango, V., et al., Relationship of psychopathology to the human serotonin1B genotype and receptor binding kinetics in postmortem brain tissue, Neuropsychopharmacology, 1999, vol. 21, no. 2, pp. 238—246. https://doi.org/10.1016/S0893-133X(99)00030-5

    Article  CAS  PubMed  Google Scholar 

  23. Duan, J., Sanders, A.R., Molen, J.E., et al., Polymorphisms in the 5'-untranslated region of the human serotonin receptor 1B (HTR1B) gene affect gene expression, Mol. Psychiatry, 2003, vol. 8, no. 11, pp. 901—910.

    Article  CAS  PubMed  Google Scholar 

  24. Kao, W.T., Yang, M.C., and Lung, F.W., Association between HTR1B alleles and suicidal ideation in individuals with major depressive disorder, Neurosci. Lett., 2017, no. 638, pp. 204—210.

  25. Bani-Fatemi, A., Howe, A., Zai, C., et al., Differential allelic expression of HTR1B in suicide victims: genetic and epigenetic effect of the cis-acting variants, Neuropsychobiology, 2016, vol. 74, no. 3, pp. 144—149.

    Article  CAS  PubMed  Google Scholar 

  26. Sabol, S.Z., Hu, S., and Hamer, D., A functional polymorphism in the monoamine oxidase A gene promoter, Hum. Genet., 1998, vol. 103, no. 3, pp. 273—279. https://doi.org/10.1007/s004390050816

    Article  CAS  PubMed  Google Scholar 

  27. Yu, Y.W., Tsai, S.J., Hong, C.J., et al., Association study of a monoamine oxidase a gene promoter polymorphism with major depressive disorder and antidepressant response, Neuropsychopharmacology, 2005, vol. 30, no. 9, pp. 1719—1723. https://doi.org/10.1038/sj.npp.1300785

    Article  CAS  PubMed  Google Scholar 

  28. Lin, Y.M., Davamani, F., Yang, W.C., et al., Association analysis of monoamine oxidase A gene and bipolar affective disorder in Han Chinese, Behav. Brain Funct., 2008, no. 4, p. 21. https://doi.org/10.1186/1744-9081-4-21

  29. Aklillu, E., Karlsson, S., Zachrisson, O.O., et al., Association of MAOA gene functional promoter polymorphism with CSF dopamine turnover and atypical depression, Pharmacogenet. Genomics, 2009, vol. 19, no. 4, pp. 267—275. https://doi.org/10.1097/FPC.0b013e328328d4d3

    Article  CAS  PubMed  Google Scholar 

  30. Doornbos, B., Dijck-Brouwer, D.A., Kema, I.P., et al., The development of peripartum depressive symptoms is associated with gene polymorphisms of MAOA, 5‑HTT and COMT, Prog. Neuropsychopharmacol. Biol. Psychiatry, 2009, vol. 33, no. 7, pp. 1250—1254. https://doi.org/10.1016/j.pnpbp.2009.07.013

    Article  CAS  PubMed  Google Scholar 

  31. Huang, S.Y., Lin, M.T., Lin, W.W., et al., Association of monoamine oxidase A (MAOA) polymorphisms and clinical subgroups of major depressive disorders in the Han Chinese population, World J. Biol. Psychiatry, 2009, vol. 10, no. 4, pp. 544—551. https://doi.org/10.1080/15622970701816506

    Article  PubMed  Google Scholar 

  32. Fan, M., Liu, B., Jiang, T., et al., Meta-analysis of the association between the monoamine oxidase-A gene and mood disorders, Psychiatr. Genet., 2010, vol. 20, no. 1, pp. 1—7. https://doi.org/10.1097/YPG.0b013e3283351112

    Article  CAS  PubMed  Google Scholar 

  33. Liu, Z., Huang, L., Luo, X.J., et al., MAOA variants and genetic susceptibility to major psychiatric disorders, Mol. Neurobiol., 2016, vol. 53, no. 7, pp. 4319—4327. https://doi.org/10.1007/s12035-015-9374-0

    Article  CAS  PubMed  Google Scholar 

  34. Priess-Groben, H.A. and Hyde, J.S., 5-HTTLPR X stress in adolescent depression: moderation by MAOA and gender, J. Abnorm. Child Psychol., 2013, vol. 41, no. 2, pp. 281—294. https://doi.org/10.1007/s10802-012-9672-1

    Article  PubMed  Google Scholar 

  35. Melas, P.A., Wei, Y., Wong, C.C., et al., Genetic and epigenetic associations of MAOA and NR3C1 with depression and childhood adversities, Int. J. Neuropsychopharmacol., 2013, vol. 16, no. 7, pp. 1513—1528. https://doi.org/10.1017/S1461145713000102

    Article  CAS  PubMed  Google Scholar 

  36. Noble, E.P., Blum, K., Ritchie, T., et al., Allelic association of the D2 dopamine receptor gene with receptor-binding characteristics in alcoholism, Arch. Gen. Psychiatry, 1991, vol. 48, no. 7, pp. 648—654. https://doi.org/10.1001/archpsyc.1991.01810310066012

    Article  CAS  PubMed  Google Scholar 

  37. Hayden, E.P., Klein, D.N., Dougherty, L.R., et al., The dopamine D2 receptor gene and depressive and anxious symptoms in childhood: associations and evidence for gene-environment correlation and gene-environment interaction, Psychiatr. Genet., 2010, vol. 20, no. 6, pp. 304—310. https://doi.org/10.1097/YPG.0b013e32833adccb

    Article  PubMed  PubMed Central  Google Scholar 

  38. Zhang, W., Cao, Y., Wang, M., et al., The dopamine D2 receptor polymorphism (DRD2 TaqIA) interacts with maternal parenting in predicting early adolescent depressive symptoms: evidence of differential susceptibility and age differences, J. Youth Adolesc., 2015, vol. 44, no. 7, pp. 1428—1440. https://doi.org/10.1007/s10964-015-0297-x

    Article  PubMed  Google Scholar 

  39. Zou, Y.F., Wang, F., Feng, X.L., et al., Association of DRD2 gene polymorphisms with mood disorders: a meta-analysis, J. Affective Disord., 2012, vol. 136, no. 3, pp. 229—237. https://doi.org/10.1016/j.jad.2010.11.012

    Article  CAS  Google Scholar 

  40. Zhang, L., Hu, L., Li, X., et al., The DRD2 rs1800497 polymorphism increase the risk of mood disorder: evidence from an update meta-analysis, J. Affective Disord., 2014, no. 158, pp. 71—77. https://doi.org/10.1016/j.jad.2014.01.015

  41. Ding, Y.C., Chi, H.C., Grady, D.L., et al., Evidence of positive selection acting at the human dopamine receptor D4 gene locus, Proc. Natl. Acad. Sci. U.S.A., 2002, vol. 99, no. 1, pp. 309—314. https://doi.org/10.1073/pnas.012464099

    Article  CAS  PubMed  Google Scholar 

  42. Schoots, O. and Van Tol, H.H., The human dopamine D4 receptor repeat sequences modulate expression, Pharmacogenomics J., 2003, vol. 3, no. 6, pp. 343—348. https://doi.org/10.1038/sj.tpj.6500208

    Article  CAS  PubMed  Google Scholar 

  43. Lopez Leon, S., Croes, E.A., Sayed-Tabatabaei, F.A., et al., The dopamine D4 receptor gene 48-base-pair-repeat polymorphism and mood disorders: a meta-analysis, Biol. Psychiatry, 2005, vol. 57, no. 9, pp. 999—1003. https://doi.org/10.1016/j.biopsych.2005.01.030

    Article  CAS  PubMed  Google Scholar 

  44. Bobadilla, L., Vaske, J., and Asberg, K., Dopamine receptor (D4) polymorphism is related to comorbidity between marijuana abuse and depression, Addict. Behav., 2013, vol. 38, no. 10, pp. 2555—2562. https://doi.org/10.1016/j.addbeh.2013.05.014

    Article  PubMed  Google Scholar 

  45. King, A.P., Muzik, M., Hamilton, L., et al., Dopamine receptor gene DRD4 7-repeat allele × maternal sensitivity interaction on child externalizing behavior problems: independent replication of effects at 18 months, PLoS One, 2016, vol. 11, no. 8. e0160473. .https://doi.org/10.1371/journal.pone.0160473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Dragan, W.L. and Oniszczenko, W., The association between dopamine D4 receptor exon III polymorphism and intensity of PTSD symptoms among flood survivors, Anxiety Stress Coping, 2009, vol. 22, no. 5, pp. 483—495. https://doi.org/10.1080/10615800802419407

    Article  PubMed  Google Scholar 

  47. Armbruster, D., Mueller, A., Moser, D.A., et al., Interaction effect of D4 dopamine receptor gene and serotonin transporter promoter polymorphism on the cortisol stress response, Behav. Neurosci., 2009, vol. 123, no. 6, pp. 1288—1295. https://doi.org/10.1037/a0017615

    Article  CAS  PubMed  Google Scholar 

  48. Van Ness, S.H., Owens, M.J. and Kilts, C.D., The variable number of tandem repeats element in DAT1 regulates in vitro dopamine transporter density, BMC Genet., 2005, no. 6, p. 55. https://doi.org/10.1186/1471-2156-6-55

  49. Bielinski, M., Jaracz, M., Lesiewska, N., et al., Association between COMT Val158Met and DAT1 polymorphisms and depressive symptoms in the obese population, Neuropsychiatr. Dis. Treat., 2017, no. 13, pp. 2221—2229. https://doi.org/10.2147/NDT.S138565

  50. Lachman, H.M., Papolos, D.F., Saito, T., et al., Human catechol-O-methyltransferase pharmacogenetics: description of a functional polymorphism and its potential application to neuropsychiatric disorders, Pharmacogenetics, 1996, vol. 6, no. 3, pp. 243—250.

    Article  CAS  PubMed  Google Scholar 

  51. Danzi, B.A., and La Greca, A.M., Genetic pathways to posttraumatic stress disorder and depression in children: investigation of catechol-O-methyltransferase (COMT) Val158Met using different PTSD diagnostic models, J. Psychiatr. Res., 2018, no. 102, pp. 81—86. https://doi.org/10.1016/j.jpsychires.2018.03.014

  52. Klein, M., Schmoeger, M., Kasper, S., et al., Meta-analysis of the COMT Val158Met polymorphism in major depressive disorder: the role of gender, World J. Biol. Psychiatry, 2016, vol. 17, no. 2, pp. 147—158. https://doi.org/10.3109/15622975.2015.1083615

    Article  PubMed  Google Scholar 

  53. Pearson-Fuhrhop, K.M., Dunn, E.C., Mortero, S., et al., Dopamine genetic risk score predicts depressive symptoms in healthy adults and adults with depression, PLoS One, 2014, vol. 9, no. 5. e93772. https://doi.org/10.1371/journal.pone.0093772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Huang, E.J. and Reichardt, L.F., Neurotrophins: roles in neuronal development and function, Annu. Rev. Neurosci., 2001, no. 24, pp. 677—736. https://doi.org/10.1146/annurev.neuro.24.1.677

  55. Egan, M.F., Kojima, M., Callicott, J.H., et al., The BDNF Val66Met polymorphism affects activity-dependent secretion of BDNF and human memory and hippocampal function, Cell, 2003, vol. 112, no. 2, pp. 257—269. https://doi.org/10.1016/s0092-8674(03)00035-7

    Article  CAS  PubMed  Google Scholar 

  56. Youssef, M.M., Underwood, M.D., Huang, Y.Y., et al., Association of BDNF Val66Met polymorphism and brain BDNF levels with major depression and suicide, Int. J. Neuropsychopharmacol., 2018, vol. 21, no. 6, pp. 528—538. https://doi.org/10.1093/ijnp/pyy008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Terracciano, A., Tanaka, T., Sutin, A.R., et al., BDNF Val66Met is associated with introversion and interacts with 5-HTTLPR to influence neuroticism, Neuropsychopharmacology, 2010, vol. 35, no. 5, pp. 1083—1089. https://doi.org/10.1038/npp.2009.213

    Article  CAS  PubMed  Google Scholar 

  58. Schumacher, J., Jamra, R.A., Becker, T., et al., Evidence for a relationship between genetic variants at the brain-derived neurotrophic factor (BDNF) locus and major depression, Biol. Psychiatry, 2005, vol. 58, no. 4, pp. 307—314. https://doi.org/10.1016/j.biopsych.2005.04.006

    Article  CAS  PubMed  Google Scholar 

  59. Borroni, B., Grassi, M., Archetti, S., et al., BDNF genetic variations increase the risk of Alzheimer’s disease-related depression, J. Alzheimers Dis., 2009, vol. 18, no. 4, pp. 867—875. https://doi.org/10.3233/JAD-2009-1191

    Article  CAS  PubMed  Google Scholar 

  60. Gutierrez, B., Bellon, J.A., Rivera, M., et al., The risk for major depression conferred by childhood maltreatment is multiplied by BDNF and SERT genetic vulnerability: a replication study, J. Psychiatry Neurosci., 2015, vol. 40, no. 3, pp. 187—196. https://doi.org/10.1503/jpn.140097

    Article  PubMed  PubMed Central  Google Scholar 

  61. Gillespie, C.F., Phifer, J., Bradley, B., et al., Risk and resilience: genetic and environmental influences on development of the stress response, Depress. Anxiety, 2009, vol. 26, no. 11, pp. 984—992. https://doi.org/10.1002/da.20605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Zannas, A.S. and Binder, E.B., Gene-environment interactions at the FKBP5 locus: sensitive periods, mechanisms and pleiotropism, Genes, Brain Behav., 2014, vol. 13, no. 1, pp. 25—37. https://doi.org/10.1111/gbb.12104

    Article  CAS  Google Scholar 

  63. Appel, K., Schwahn, C., Mahler, J., et al., Moderation of adult depression by a polymorphism in the FKBP5 gene and childhood physical abuse in the general population, Neuropsychopharmacology, 2011, vol. 36, no. 10, pp. 1982—1991. https://doi.org/10.1038/npp.2011.81

    Article  PubMed  PubMed Central  Google Scholar 

  64. Lahti, J., Ala-Mikkula, H., Kajantie, E., et al., Associations between self-reported and objectively recorded early life stress, FKBP5 polymorphisms, and depressive symptoms in midlife, Biol. Psychiatry, 2016, vol. 80, no. 11, pp. 869—877. https://doi.org/10.1016/j.biopsych.2015.10.022

    Article  PubMed  Google Scholar 

  65. Tozzi, L., Carballedo, A., Wetterling, F., et al., Single-nucleotide polymorphism of the FKBP5 gene and childhood maltreatment as predictors of structural changes in brain areas involved in emotional processing in depression, Neuropsychopharmacology, 2016, vol. 41, no. 2, pp. 487—497. https://doi.org/10.1038/npp.2015.170

    Article  CAS  PubMed  Google Scholar 

  66. Bradley, R.G., Binder, E.B., Epstein, M.P., et al., Influence of child abuse on adult depression: moderation by the corticotropin-releasing hormone receptor gene, Arch. Gen. Psychiatry, 2008, vol. 65, no. 2, pp. 190—200. https://doi.org/10.1001/archgenpsychiatry.2007.26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Ressler, K.J., Bradley, B., Mercer, K.B., et al., Polymorphisms in CRHR1 and the serotonin transporter loci: gene × gene × environment interactions on depressive symptoms, Am. J. Med. Genet.,Part B, 2010, vol. 153B, no. 3, pp. 812—824. https://doi.org/10.1002/ajmg.b.31052

    Article  CAS  Google Scholar 

  68. Ludwig, B., Kienesberger, K., Carlberg, L., et al., Influence of CRHR1 polymorphisms and childhood abuse on suicide attempts in affective disorders: A G × E approach, Front. Psychiatry, 2018, no. 9, p. 165. https://doi.org/10.3389/fpsyt.2018.00165

  69. Hsu, W.W., Wu, B., and Liu, W.R., Sirtuins 1 and 2 are universal histone deacetylases, ACS Chem. Biol., 2016, vol. 11, no. 3, pp. 792—799. https://doi.org/10.1021/acschembio.5b00886

    Article  CAS  PubMed  Google Scholar 

  70. Donmez, G. and Outeiro, T.F., SIRT1 and SIRT2: emerging targets in neurodegeneration, EMBO Mol. Med., 2013, vol. 5, no. 3, pp. 344—352. https://doi.org/10.1002/emmm.201302451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Tang, L., Chen, Q., Meng, Z., et al., Suppression of sirtuin-1 increases IL-6 expression by activation of the akt pathway during allergic asthma, Cell Physiol. Biochem., 2017, vol. 43, no. 5, pp. 1950—1960. https://doi.org/10.1159/000484119

    Article  CAS  PubMed  Google Scholar 

  72. Aftanas, L.I., Anisimenko, M.S., Berdyugina, D.A., et al., SIRT1 allele frequencies in depressed patients of European descent in Russia, Front. Genet., 2018, no. 9, p. 686. https://doi.org/10.3389/fgene.2018.00686

  73. Pearson, T.A. and Manolio, T.A., How to interpret a genome-wide association study, JAMA, 2008, vol. 299, no. 11, pp. 1335—1344. https://doi.org/10.1001/jama.299.11.1335

    Article  CAS  PubMed  Google Scholar 

  74. Shadrina, M., Bondarenko, E.A., and Slominsky, P.A., Genetics factors in major depression disease, Front. Psychiatry, 2018, vol. 9, p. 334. https://doi.org/10.3389/fpsyt.2018.00334

    Article  PubMed  PubMed Central  Google Scholar 

  75. Sullivan, P.F., de Geus, E.J., Willemsen, G., et al., Genome-wide association for major depressive disorder: a possible role for the presynaptic protein piccolo, Mol. Psychiatry, 2009, vol. 14, no. 4, pp. 359—375. https://doi.org/10.1038/mp.2008.125

    Article  CAS  PubMed  Google Scholar 

  76. Ripke, S., Wray, N.R., Lewis, C., et al., A mega-analysis of genome-wide association studies for major depressive disorder, Mol. Psychiatry, 2013, vol. 18, no. 4, pp. 497—511. https://doi.org/10.1038/mp.2012.21

    Article  CAS  PubMed  Google Scholar 

  77. Hek, K., Demirkan, A., Lahti, J., et al., A genome-wide association study of depressive symptoms, Biol. Psychiatry, 2013, vol. 73, no. 7, pp. 667—678. https://doi.org/10.1016/j.biopsych.2012.09.033

    Article  CAS  PubMed  Google Scholar 

  78. Rees, M.I., Harvey, K., Ward, H., et al., Isoform heterogeneity of the human gephyrin gene (GPHN), binding domains to the glycine receptor, and mutation analysis in hyperekplexia, J. Biol. Chem., 2003, vol. 278, no. 27, pp. 24688—24696. https://doi.org/10.1074/jbc.M301070200

    Article  CAS  PubMed  Google Scholar 

  79. CONVERGE Consortium, Sparse whole-genome sequencing identifies two loci for major depressive disorder, Nature, 2015, vol. 523, no. 7562, pp. 588—591. https://doi.org/10.1038/nature14659

    Article  CAS  PubMed Central  Google Scholar 

  80. Okbay, A., Baselmans, B.M., De Neve, J.E., et al., Genetic variants associated with subjective well-being, depressive symptoms, and neuroticism identified through genome-wide analyses, Nat. Genet., 2016, vol. 48, no. 6, pp. 624—633. https://doi.org/10.1038/ng.3552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Hyde, C.L., Nagle, M.W., Tian, C., et al., Identification of 15 genetic loci associated with risk of major depression in individuals of European descent, Nat. Genet., 2016, vol. 48, no. 9, pp. 1031—1036. https://doi.org/10.1038/ng.3623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Liu, W. and Rodgers, G.P., Olfactomedin 4 expression and functions in innate immunity, inflammation, and cancer, Cancer Metastasis Rev., 2016, vol. 35, no. 2, pp. 201—212. https://doi.org/10.1007/s10555-016-9624-2

    Article  CAS  PubMed  Google Scholar 

  83. Hawrylycz, M.J., Lein, E.S., Guillozet-Bongaarts, A.L., et al., An anatomically comprehensive atlas of the adult human brain transcriptome, Nature, 2012, vol. 489, no. 7416, pp. 391—399. https://doi.org/10.1038/nature11405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Wray, N.R., Ripke, S., Mattheisen, M., et al., Genome-wide association analyses identify 44 risk variants and refine the genetic architecture of major depression, Nat. Genet., 2018, vol. 50, no. 5, pp. 668—681. https://doi.org/10.1038/s41588-018-0090-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Sanz, R., Ferraro, G.B., and Fournier, A.E., IgLON cell adhesion molecules are shed from the cell surface of cortical neurons to promote neuronal growth, J. Biol. Chem., 2015, vol. 290, no. 7, pp. 4330—4342. https://doi.org/10.1074/jbc.M114.628438

    Article  CAS  PubMed  Google Scholar 

  86. Lee, A.W., Hengstler, H., Schwald, K., et al., Functional inactivation of the genome-wide association study obesity gene neuronal growth regulator 1 in mice causes a body mass phenotype, PLoS One, 2012, vol. 7, no. 7. e41537. https://doi.org/10.1371/journal.pone.0041537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Hashimoto, T., Maekawa, S., and Miyata, S., IgLON cell adhesion molecules regulate synaptogenesis in hippocampal neurons, Cell Biochem. Funct., 2009, vol. 27, no. 7, pp. 496—498. https://doi.org/10.1002/cbf.1600

    Article  CAS  PubMed  Google Scholar 

  88. Amir-Zilberstein, L., Blechman, J., Sztainberg, Y., et al., Homeodomain protein otp and activity-dependent splicing modulate neuronal adaptation to stress, Neuron, 2012, vol. 73, no. 2, pp. 279—291. https://doi.org/10.1016/j.neuron.2011.11.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Choi, Y., Nam, J., Whitcomb, D.J., et al., SALM5 trans-synaptically interacts with LAR-RPTPs in a splicing-dependent manner to regulate synapse development, Sci. Rep., 2016, no. 6, p. 26676. https://doi.org/10.1038/srep26676

  90. Zhu, Y., Yao, S., Augustine, M.M., et al., Neuron-specific SALM5 limits inflammation in the CNS via its interaction with HVEM, Sci. Adv., 2016, vol. 2, no. 4. e1500637. https://doi.org/10.1126/sciadv.1500637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The present study was supported by the Russian Foundation for Basic Research (project nos. 19-04-00383, 17-29-02203-ofi-m) and the Program “Postgenomic Technologies and Prospective Solutions in Biomedicine.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. I. Rafikova.

Ethics declarations

The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Additional information

Translated by A. Kazantseva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rafikova, E.I., Ryskov, A.P. & Vasilyev, V.A. Genetics of Depressive Disorders: Candidate Genes and Genome-Wide Association Studies. Russ J Genet 56, 903–915 (2020). https://doi.org/10.1134/S1022795420080116

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795420080116

Keywords:

Navigation