Skip to main content
Log in

Dnmt2 is the most evolutionary conserved and enigmatic cytosine DNA methyltransferase in eukaryotes

  • Reviews and Theoretical Articles
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

Dnmt2 is the most strongly conserved cytosine DNA methyltransferase in eukaryotes. It has been found in all organisms possessing methyltransferases of the Dnmt1 and Dnmt3 families, whereas in many others Dnmt2 is the sole cytosine DNA methyltransferase. The Dnmt2 molecule contains all conserved motifs of cytosine DNA methyltransferases. It forms 3D complexes with DNA very similar to those of bacterial DNA methyltransferases and performs cytosine methylation by a catalytic mechanism common to all cytosine DNA methyltransferases. Catalytic activity of the purified Dnmt2 with DNA substrates is very low and could hardly be detected in direct biochemical assays. Dnmt2 is the sole cytosine DNA methyltransferase in Drosophila and other dipteran insects. Its overexpression as a transgene leads to DNA hypermethylation in all sequence contexts and to an extended life span. On the contrary, a null-mutation of the Dnmt2 gene leads to a diminished life span, though no evident anomalies in development are observed. Dnmt2 is also the sole cytosine DNA methyltransferase in several protists. Similar to Drosophila these protists have a very low level of DNA methylation. Some limited genome compartments, such as transposable sequences, are probably the methylation targets in these organisms. Dnmt2 does not participate in genome methylation in mammals, but seems to be an RNA methyltransferase modifying the 38th cytosine residue in anticodon loop of certain tRNAs. This modification enhances stability of tRNAs, especially in stressful conditions. Dnmt2 is the only enzyme known to perform RNA methylation by a catalytic mechanism characteristic of DNA methyltransferases. The Dnmt2 activity has been shown in mice to be necessary for paramutation establishment, though the precise mechanisms of its participation in this form of epigenetic heredity are unknown. It seems likely, that either of the two Dnmt2 activities could become a predominant one during the evolution of different species. The high level of the Dnmt2 evolutionary conservation proves its activity to have a significant adaptive value in natural environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Posfai, J., Bhagwat, A.S., Posfai, G., and Roberts, R.J., Predictive motifs derived from cytosine methyltransferases, Nucleic Acids Res., 1989, vol. 17, pp. 2421–2435. doi 10.1093/nar/17.7.2421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Kumar, S., Cheng, X., and Klimasauskas, S., et al., The DNA (cytosine-5) methyltransferases, Nucleic Acids Res., 1994, vol. 22, pp. 1–10. doi 10.1093/nar/22.1.1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Goll, M.G. and Bestor, T.H., Eukaryotic cytosine methyltransferases, Annu. Rev. Biochem., 2005, vol. 74, pp. 481–514. doi 10.1146/annurevbiochem.74. 010904.153721

    Article  CAS  PubMed  Google Scholar 

  4. Colot, V. and Rossignol, J.L., Eukaryotic DNA methylation as an evolutionary device, BioEssays, 1999, vol. 21, pp. 402–411. doi 10.1002/(SICI)15211878(199905)21:5402::AID-BIES73.0.CO;2-B

    Article  CAS  PubMed  Google Scholar 

  5. Bestor, T., Laudano, A., Mattaliano, R., and Ingram, V., Cloning and sequencing of a cDNA encoding DNA methyltransferase of mouse cells: the carboxyl-terminal domain of the mammalian enzymes is related to bacterial restriction methyltransferases, J. Mol. Biol., 1988, vol. 203, pp. 971–983. doi 10.1016/0022-2836(88) 90122-2

    Article  CAS  PubMed  Google Scholar 

  6. Wilkinson, C.R., Bartlett, R., Nurse, P., and Bird, A.P., The fission yeast gene pmt1+ encodes a DNA methyltransferase homologue, Nucleic Acids Res., 1995, vol. 23, pp. 203–210. doi 10.1093/nar/23.2.203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Okano, M., Xie, S., and Li, E., Dnmt2 is not required for de novo and maintenance methylation of viral DNA in embryonic stem cells, Nucleic Acids Res., 1998, vol. 26, pp. 2536–2540. doi 10.1093/nar/26.11.2536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Van den Wyngaert, I., Sprengel, J., Kass, S.U., and Luyten, W.H.M.L., Cloning and analysis of a novel human putative DNA methyltransferase, FEBS Lett., 1998, vol. 426, pp. 283–289. doi 10.1016/S00145793(98)00362-7

    Article  CAS  PubMed  Google Scholar 

  9. Yoder, J.A. and Bestor, T.H., A candidate mammalian DNA methyltransferase related to pmt1p of fission yeast, Hum. Mol. Genet., 1998, vol. 7, pp. 279–284. doi 10.1093/hmg/7.2.279

    Article  CAS  PubMed  Google Scholar 

  10. Okano, M., Bell, D.W., Haber, D.A., and Li, E., DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development, Cell, 1999, vol. 99, pp. 247–257. doi 10.1016/S00928674(00)81656-6

    Article  CAS  PubMed  Google Scholar 

  11. Henikoff, S. and Comai, L., A DNA methyltransferase homologous with a chromodomain exists in multiple polymorphic forms in Arabidopsis, Genetics, 1998, vol. 149, pp. 307–318.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Malagnac, F., Wendel, B., Goyon, C., et al., A gene essential for de novo methylation and development in Ascobolus reveals a novel type of eukaryotic DNA methyltransferase structure, Cell, 1997, vol. 91, pp. 281–290. doi 10.1016/S0092-8674(00)80410-9

    Article  CAS  PubMed  Google Scholar 

  13. Pinarbasi, E., Elliott, J., and Hornby, D.P., Activation of a yeast pseudo DNA methyltransferase by deletion of a single amino acid, J. Mol. Biol., 1996, vol. 257, pp. 804–813. doi 10.1006/jmbi.1996.0203

    Article  CAS  PubMed  Google Scholar 

  14. Dong, A., Yoder, J.A., Zhang, X., et al., Structure of human DNMT2, an enigmatic DNA methyltransferase homolog that displays denaturant-resistant binding to DNA, Nucleic Acids Res., 2001, vol. 29, pp. 439–448. doi 10.1093/nar/29.2.439

    CAS  PubMed  Google Scholar 

  15. Liu, K., Wang, Y.F., Cantemir, C., and Muller, M.T., Endogenous assays of DNA methyltransferases: evidence for differential activities of DNMT1, DNMT2, and DNMT3 in mammalian cells in vivo, Mol. Cell. Biol., 2003, vol. 23, pp. 2709–2719. doi 10.1128/ MCB.23.8.2709-2719.2003

    CAS  PubMed  Google Scholar 

  16. Hermann, A., Schmitt, S., and Jeltsch, A., The human Dnmt2 has residual DNA-(cytosine-C5) methyltransferase activity, J. Biol. Chem., 2003, vol. 278, pp. 31717–31721. doi 10.1074/jbc.M305448200

    Article  CAS  PubMed  Google Scholar 

  17. Goll, M.G., Kirpekar, F., Maggert, K.A., et al., Methylation of tRNAAsp by the DNA methyltransferase homolog Dnmt2, Science, 2006, vol. 311, pp. 395–398. doi 10.1126/science.1120976

    Article  CAS  PubMed  Google Scholar 

  18. Gowher, H., Leismann, O., and Jeltsch, A., DNA of Drosophila melanogaster contains 5-methylcytosine, EMBO J., 2000, vol. 19, pp. 6918–6923. doi 10.1093/ emboj/19.24.6918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lyko, F., Ramsahoye, B.H., and Jaenisch, R., DNA methylation in Drosophila melanogaster, Nature, 2000, vol. 408, pp. 538–540. doi 10.1038/35046205

    Article  CAS  PubMed  Google Scholar 

  20. Hung, M.-S., Karthikeyan, N., Huang, B., et al., Drosophila proteins related to vertebrate DNA (5-cytosine) methyltransferases, Proc. Natl. Acad. Sci. U.S.A., 1999, vol. 96, pp. 11940–11945. doi 10.1073/ pnas.96.21.11940

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Tweedie, S., Ng, H.-H., Barlow, A.L., et al., Vestiges of a DNA methylation system in Drosophila melanogaster?, Nat. Genet., 1999, vol. 23, pp. 389–390. doi 10.1038/70490

    Article  CAS  PubMed  Google Scholar 

  22. Kunert, N., Marhold, J., Stanke, J., et al., A Dnmt2like protein mediates DNA methylation in Drosophila, Development, 2003, vol. 130, pp. 5083–5090. doi 10.1242/dev.00716

    Article  CAS  PubMed  Google Scholar 

  23. Reddy, M.N., Tang, L.Y., Lee, T.-L., and Shen, C.-K.J., A candidate gene for Drosophila genome methylation, Oncogene, 2003, vol. 22, pp. 6301–6303. doi 10.1038/sjonc.1206650

    Article  Google Scholar 

  24. Tang, L.Y., Reddy, M.N., Rasheva, V., et al., The eukaryotic DNMT2 genes encode a new class of cytosine-5 DNA methyltransferases, J. Biol. Chem., 2003, vol. 278, pp. 33613–33616. doi 10.1074/ jbc.C300255200

    Article  CAS  PubMed  Google Scholar 

  25. Lin, M.-J., Tang, L.-Y., Reddy, M.N., and Shen, C.-K.J., DNA methyltransferase gene dDnmt2 and longevity of Drosophila, J. Biol. Chem., 2005, vol. 280, pp. 861–864. doi 10.1074/jbc.C400477200

    Article  CAS  PubMed  Google Scholar 

  26. Lyko, F., Ramsahoye, B.H., Kashevsky, H., et al., Mammalian (cytosine-5) methyltransferases cause genomic DNA methylation and lethality in Drosophila, Nat. Genet., 1999, vol. 23, pp. 363–366. doi 10.1038/ 15551

    Article  CAS  PubMed  Google Scholar 

  27. Phalke, S., Nickel, O., Walluscheck, D., et al., Retrotransposon silencing and telomere integrity in somatic cells of Drosophila depends on the cytosine-5 methyltransferase DNMT2, Nat. Genet., 2009, vol. 41, pp. 696–702. doi 10.1038/ng.360

    Article  CAS  PubMed  Google Scholar 

  28. Schaefer, M. and Lyko, F., Lack of evidence for DNA methylation of Invader4 retroelements in Drosophila and implications for Dnmt2-mediated epigenetic regulation, Nat. Genet., 2010, vol. 42, pp. 920–921. doi 10.1038/ng1110-920

    Article  CAS  PubMed  Google Scholar 

  29. Gou, D., Rubalcava, M., Sauer, S., et al., SETDB1 is involved in postembryonic DNA methylation and gene silencing in Drosophila, PLoS One, 2010, vol. 5. e10581. doi 10.1371/journalpone.0010581

    Article  PubMed  PubMed Central  Google Scholar 

  30. Mund, C., Musch, T., Strodicke, M., et al., Comparative analysis of DNA methylation patterns in transgenic Drosophila overexpressing mouse DNA methyltransferases, Biochem. J., 2004, vol. 378, pp. 763–768. doi 10.1042/BJ20031567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Fisher, O., Siman-Tov, R., and Ankri, S., Characterization of cytosine methylated regions and 5-cytosine DNA methyltransferase (Ehmeth) in the protozoan parasite Entamoeba histolytica, Nucleic Acids Res., 2004, vol. 32, pp. 287–297. doi 10.1093/nar/gkh161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Banerjeea, S., Fisher, O., Lohia, A., and Ankri, S., Entamoeba histolytica DNA methyltransferase (Ehmeth) is a nuclear matrix protein that binds EhMRS2, a DNA that includes a scaffold/matrix attachment region (S/MAR), Mol. Biochem. Parasitol., 2005, vol. 139, pp. 91–97. doi 10.1016/jmolbiopara.2004.10.003

    Google Scholar 

  33. Fisher, O., Siman-Tov, R., and Ankri, S., Pleiotropic phenotype in Entamoeba histolytica overexpressing DNA methyltransferase (Ehmeth), Mol. Biochem. Parasitol., 2006, vol. 147, pp. 48–54. doi 10.1016/jmolbiopara.2006.01.007

    Article  CAS  PubMed  Google Scholar 

  34. Tovy, A., Siman-Tov, R., Gaentzsch, R., et al., A new nuclear function of the Entamoeba histolytica glycolytic enzyme enolase: the metabolic regulation of cytosine-5 methyltransferase 2 (Dnmt2) activity, PLoS Pathog., 2010, vol. 6. e1000775. doi 10.1371/journalppat. 1000775

    Article  PubMed  PubMed Central  Google Scholar 

  35. Eichinger, L., Pachebat, J.A., Glöckner, G., et al., The genome of the social amoeba Dictyostelium discoideum, Nature, 2005, vol. 435, pp. 43–57. doi 10.1038/ nature03481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ponger, L. and Li, W.-H., Evolutionary diversification of DNA methyltransferases in eukaryotic genomes, Mol. Biol. Evol., 2005, vol. 22, pp. 1119–1128. doi 10.1093/molbev/msi098

    Article  CAS  PubMed  Google Scholar 

  37. Kuhlmann, M., Borisova, B.E., Kaller, M., et al., Silencing of retrotransposons in Dictyostelium by DNA methylation and RNAi, Nucleic Acids Res., 2005, vol. 33, pp. 6405–6417. doi 10.1093/nar/gki952

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Katoh, M., Curk, T., Xu, Q., et al., Developmentally regulated DNA methylation in Dictyostelium discoideum, Eukaryotic Cell, 2006, vol. 5, pp. 18–25. doi 10.1128/EC.5.1.18–25.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Marhold, J., Rothe, N., Pauli, A., et al., Conservation of DNA methylation in dipteran insects, Insect Mol. Biol., 2004, vol. 13, pp. 117–123. doi 10.1111/j.09621075.2004.00466x

    Article  CAS  PubMed  Google Scholar 

  40. Gutierrez, A. and Sommer, R.J., Evolution of dnmt-2 and mbd-2-like genes in the free-living nematodes Pristionchus pacificus, Caenorhabditis elegans and Caenorhabditis briggsae, Nucleic Acids Res., 2004, vol. 32, pp. 6388–6396. doi 10.1093/nar/gkh982

    Article  CAS  PubMed  Google Scholar 

  41. Wang, Y., Jorda, M., Jones, P.L., et al., Functional CpG methylation system in a social insect, Science, 2006, vol. 314, pp. 645–647. doi 10.1126/science.1135213

    Article  CAS  PubMed  Google Scholar 

  42. Lyko, F. and Maleszka, R., Insects as innovative models for functional studies of DNA methylation, Trends Genet., 2011, vol. 27, pp. 127–131. doi 10.1016/ jtig.2011.01.003

    Article  CAS  PubMed  Google Scholar 

  43. Canestro, C., Yokoi, H., and Postlethwait, J.H., Evolutionary developmental biology and genomics, Nat. Rev. Genet., 2007, vol. 8, pp. 932–942. doi 10.1038/nrg2226

    Article  CAS  PubMed  Google Scholar 

  44. Albalat, R., Evolution of DNA-methylation machinery: DNA methyltransferases and methyl-DNA binding proteins in the amphioxus Branchiostoma floridae, Dev. Genes Evol., 2008, vol. 218, pp. 691–701. doi 10.1007/s00427-008-0247-7

    Article  CAS  PubMed  Google Scholar 

  45. Albalat, R., Marti-Solans, J., and Canestro, C., DNA methylation in amphioxus: from ancestral functions to new roles in vertebrates, Brief. Funct. Genomics, 2012, vol. 11, pp. 142–155. doi 10.1093/bfgp/els009

    Article  CAS  PubMed  Google Scholar 

  46. Matsuzaki, M., Misumi, O., and Shin-i, T., et al., Genome sequence of the ultrasmall unicellular red alga Cyanidioschyzon merolae 10D, Nature, 2004, vol. 428, pp. 653–657. doi 10.1038/nature02398

    Article  CAS  PubMed  Google Scholar 

  47. Feng, C.-Z., Zhu, X.-J., Dai, Z.-M., et al., Identification of a novel DNA methyltransferase 2 from the brine shrimp, Artemia franciscana, Comp. Biochem. Physiol., 2007, vol. 147, pp. 191–198. doi 10.1016/jcbpb.2007. 01.024

    Article  Google Scholar 

  48. Rai, K., Chidester, S., Zavala, C.V., et al., Dnmt2 functions in the cytoplasm to promote liver, brain, and retina development in zebrafish, Genes Dev., 2007, vol. 21, pp. 261–266. doi 10.1101/gad.1472907

    CAS  PubMed  Google Scholar 

  49. Schaefer, M., Steringer, J.P., and Lyko, F., The Drosophila cytosine-5 methyltransferase Dnmt2 is associated with the nuclear matrix and can access DNA during mitosis, PLoS One, 2008, vol. 3. e1414. doi 10.1371/ journalpone.0001414

  50. Geyer, K.K., Rodríguez López, C., Chalmers, I.W., et al., Cytosine methylation regulates oviposition in the pathogenic blood fluke Schistosoma mansoni, Nat. Commun., 2011, vol. 2, p. 424. doi 10.1038/ ncomms1433

    Article  PubMed  PubMed Central  Google Scholar 

  51. Liu, Y. and Santi, D.V., m5C RNA and m5C DNA methyl transferases use different cysteine residues as catalysts, Proc. Natl. Acad. Sci. U.S.A., 2000, vol. 97, pp. 8263–8265. doi 10.1073/pnas.97.15.8263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Foster, P.G., Nunes, C.R., Greene, P., et al., The first structure of an RNA m5C methyltransferase, Fmu, provides insight into catalytic mechanism and specific binding of RNA substrate, Structure, 2003, vol. 11, pp. 1609–1620. doi 10.1016/jstr.2003.10.014

    CAS  PubMed  Google Scholar 

  53. Bujnicki, J.M., Feder, M., Ayres, C.L., and Redman, K.L., Sequence-structure-function studies of tRNA:m5C methyltransferase Trm4p and its relationship to DNA:m5C and RNA:m5U methyltransferases, Nucleic Acids Res., 2004, vol. 32, pp. 2453–2463. doi 10.1093/nar/gkh564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Walbott, H., Husson, C., Auxilien, S., and GolinelliPimpaneau, B., Cysteine of sequence motif VI is essential for nucleophilic catalysis by yeast tRNA m5C methyltransferase, RNA, 2007, vol. 13, pp. 967–973. doi 10.1261/rna.515707

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Cheng, X. and Roberts, R.J., AdoMet-dependent methylation, DNA methyltransferases and base flipping, Nucleic Acids Res., 2001, vol. 29, pp. 3784–3795. doi 10.1093/nar/29.18.3784

    Article  CAS  PubMed  Google Scholar 

  56. Jurkowski, T.P., Meusburger, M., Phalke, S., et al., Human DNMT2 methylates tRNAAsp molecules using a DNA methyltransferase-like catalytic mechanism, RNA, 2008, vol. 14, pp. 1663–1670. doi 10.1261/rna. 970408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Schaefer, M., Pollex, T., Hanna, K., and Lyko, F., RNA cytosine methylation analysis by bisulfite sequencing, Nucleic Acids Res., 2009, vol. 37. e12. doi 10.1093/nar/ gkn954

    Article  PubMed  PubMed Central  Google Scholar 

  58. Schaefer, M., Pollex, T., Hanna, K., et al., RNA methylation by Dnmt2 protects transfer RNAs against stress-induced cleavage, Genes Dev., 2010, vol. 24, pp. 1590–1595. doi 10.1101/gad.586710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Tuorto, F., Liebers, R., Musch, T., et al., RNA cytosine methylation by Dnmt2 and NSun2 promotes tRNA stability and protein synthesis, Nat. Struct. Mol. Biol., 2012, vol. 19, pp. 900–905. doi 10.1038/nsmb.2357

    Article  CAS  PubMed  Google Scholar 

  60. Chandler, V.L., Paramutation’s properties and puzzles, Science, 2010, vol. 330, pp. 628–629. doi 10.1126/science.1191044

    Article  CAS  PubMed  Google Scholar 

  61. Suter, C.M. and Martin, D.I.K., Paramutation: the tip of an epigenetic iceberg?, Trends Genet., 2010, vol. 26, pp. 9–14. doi 10.1016/jtig.2009.11.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Rassoulzadegan, M., Grandjean, V., Gounon, P., et al., RNA-mediated non-Mendelian inheritance of an epigenetic change in the mouse, Nature, 2006, vol. 441, pp. 469–474. doi 10.1038/nature04674

    Article  CAS  PubMed  Google Scholar 

  63. Kiani, J., Grandjean, V., Liebers, R., et al., RNAmediated epigenetic heredity requires the cytosine methyltransferase Dnmt2, PLoS Genet., 2013, vol. 9. e1003498. doi 10.1371/journalpgen.1003498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Grandjean, V., Gounon, P., Wagner, N., et al., The miR-124–Sox9 paramutation: RNA-mediated epigenetic control of embryonic and adult growth, Development, 2009, vol. 136, pp. 3647–3655. doi 10.1242/dev. 041061

    Article  CAS  PubMed  Google Scholar 

  65. Raddatz, G., Guzzardo, P.M., Olova, N., et al., Dnmt2-dependent methylomes lack defined DNA methylation patterns, Proc. Natl. Acad. Sci. U.S.A., 2013, vol. 110, pp. 8627–8631. doi 10.1073/pnas. 1306723110

    Article  PubMed  PubMed Central  Google Scholar 

  66. Lister, R., O’Malley, R.C., Tonti-Filippini, J., et al., Highly integrated single-base resolution maps of the epigenome in Arabidopsis, Cell, 2008, vol. 133, pp. 523–536. doi 10.1016/jcell.2008.03.029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Lister, R., Pelizzola, M., Dowen, R.H., et al., Human DNA methylomes at base resolution show widespread epigenomic differences, Nature, 2009, vol. 462, pp. 315–322. doi 10.1038/nature08514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Ziller M.J., Müller F., Liao, J., et al., Genomic distribution and inter-sample variation of non-CpG methylation across human cell types, PLoS Genet., 2011, vol. 7. e1002389. doi 10.1371/journalpgen.1002389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Takayama, S., Dhahbi, J., Roberts, A., et al., Genome methylation in D. melanogaster is found at specific short motifs and is independent of DNMT2 activity, Genome Res., 2014, vol. 24, pp. 821–830. doi 10.1101/gr. 162412.113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Ashapkin.

Additional information

Published in Russian in Genetika, 2016, Vol. 52, No. 3, pp. 269–282.

The article was translated by the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ashapkin, V.V., Kutueva, L.I. & Vanyushin, B.F. Dnmt2 is the most evolutionary conserved and enigmatic cytosine DNA methyltransferase in eukaryotes. Russ J Genet 52, 237–248 (2016). https://doi.org/10.1134/S1022795416030029

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795416030029

Keywords

Navigation