Skip to main content
Log in

Study on Exploration Potential Anti-Cancer Activity miRNAs and Its Expression Rule Related to Growth Years in Mountain-Cultivated Ginseng

  • RESEARCH PAPERS
  • Published:
Russian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

Plant-derived miRNAs exist in mammals in a cross-kingdom manner and many studies have focused on their role in regulating and treating diseases. Mountain-cultivated ginseng (Panax ginseng C.A. Mey.) is a valuable Chinese medicine with anti-cancer activity. However, the miRNAs with anti-cancer activity are less studied. In this study, 12 mountain-cultivated ginseng samples were collected from Liaoning Province, China, at 4, 15, 18, and 20 growth years, three biological replicates of each growth year were performed. Small RNA libraries were constructed and sequenced on the BGISEQ-500 platform. By sequencing analysis, 299 miRNAs were identified, including 48 known miRNAs and 251 potential novel miRNAs. A total of 4633 potential human genes were predicted as putative targets of miRNAs by using RNA hybrid, Miranda, and Target Scan software. Then 75 miRNAs were screened to target 277 cancer genes. Interestingly, pgi-miR6135a targeted SOS1 to inhibit cancer occurrence, and its expression level increased with the growth years. It is suggested that the expression of miRNA may affect the anti-cancer activity of mountain-cultivated ginseng in different growth years. However, the human targets of mountain-cultivated ginseng miRNAs need to be confirmed through further experimental validation. This study predicted the miRNA of mountain-cultivated ginseng with anti-cancer activity and provided insights for researches investigating the efficacy of traditional Chinese medicine from the perspective of cross-kingdom regulation of plant-derived miRNAs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Zhou, L., Li, Z.K., Li, C.Y., Liang, Y.Q., and Yang, F., Anticancer properties and pharmaceutical applications of ginsenoside compound K: A review, Chem. Biol. Drug Des., 2022, vol. 99, p. 286. https://doi.org/10.1111/cbdd.13983

    Article  CAS  PubMed  Google Scholar 

  2. Xiao, D., Yue, H., Xiu, Y., Sun, X., Wang, Y., and Liu, S., Accumulation characteristics and correlation analysis of five ginsenosides with different cultivation ages from different regions, J. Ginseng Res., 2015, vol. 39, p. 338. https://doi.org/10.1016/j.jgr.2015.03.004

    Article  PubMed  PubMed Central  Google Scholar 

  3. Chang, X., Zhang, J., Li, D., Zhou, D., Zhang, Y., Wang, J., Hu, B., Ju, A., and Ye, Z., Nontargeted metabolomics approach for the differentiation of cultivation ages of mountain cultivated ginseng leaves using UHPLC/QTOF-MS, J. Pharm. Biomed. Anal., 2017, vol. 141, p. 108. https://doi.org/10.1016/j.jpba.2017.04.009

    Article  CAS  PubMed  Google Scholar 

  4. Lee, R.C., Feinbaum, R.L., and Ambros, V., The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14, Cell, 1993, vol. 75, p. 843. https://doi.org/10.1016/0092-8674(93)90529-y

    Article  CAS  PubMed  Google Scholar 

  5. Reinhart, B.J., Weinstein, E.G., Rhoades, M.W., Bartel, B., and Bartel, D.P., MicroRNAs in plants, Genes Dev., 2002, vol. 16, p. 1616. https://doi.org/10.1101/gad.1004402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Wu, G., Park, M.Y., Conway, S.R., Wang, J.W., Weigel, D., and Poethig, R.S., The sequential action of miR156 and miR172 regulates developmental timing in Arabidopsis, Cell, 2009, vol. 138, p. 750. https://doi.org/10.1016/j.cell.2009.06.031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Rahimi, A., Karami, O., Balazadeh, S., and Offringa, R., miR156-independent repression of the ageing pathway by longevity-promoting AHL proteins in Arabidopsis, New Phytol., 2022, vol. 235, p. 2424. https://doi.org/10.1111/nph.18292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Zhang, L., Hou, D., Chen, X., Li, D., Zhu, L., Zhang, Y., Li, J., Bian, Z., Liang, X., Cai, X., Yin, Y., Wang, C., Zhang, T., Zhu, D., Zhang, D., et al., Exogenous plant MIR168a specifically targets mammalian LDLRAP1: evidence of cross-kingdom regulation by microRNA, Cell Res., 2012, vol. 22, p. 107. https://doi.org/10.1038/cr.2011.158

    Article  CAS  PubMed  Google Scholar 

  9. Sharma, A., Sahu, S., Kumari, P., Gopi, S.R., Malhotra, R., and Biswas, S., Genome-wide identification and functional annotation of miRNAs in anti-inflammatory plant and their cross-kingdom regulation in Homo sapiens, J. Biomol. Struct. Dyn., 2017, vol. 35, p. 1389. https://doi.org/10.1080/07391102.2016.1185381

    Article  CAS  PubMed  Google Scholar 

  10. Sun, M., Xu, S., Mei, Y., Li, J., Gu, Y., Zhang, W., and Wang, J., MicroRNAs in medicinal plants, Int. J. Mol. Sci., 2022, vol. 23, p. 10477. https://doi.org/10.3390/ijms231810477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Chen, Y., Chen, Y., Shi, C., Huang, Z., Zhang, Y., Li, S., Li, Y., Ye, J., Yu, C., Li, Z., Zhang, X., Wang, J., Yang, H., Fang, L., and Chen, Q., SOAPnuke: a MapReduce acceleration-supported software for integrated quality control and preprocessing of high-throughput sequencing data, Gigascience, 2018, vol. 7, p. 1. https://doi.org/10.1093/gigascience/gix120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Langmead, B., Trapnell, C., Pop, M., and Salzberg, S.L., Ultrafast and memory-efficient alignment of short DNA sequences to the human genome, Genome Biol., 2009, vol. 10, p. R25. https://doi.org/10.1186/gb-2009-10-3-r25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Evers, M., Huttner, M., Dueck, A., Meister, G., and Engelmann, J.C., miRA: adaptable novel miRNA identification in plants using small RNA sequencing data, BMC Bioinformatics, 2015, vol. 16, p. 370. https://doi.org/10.1186/s12859-015-0798-3

    Article  PubMed  PubMed Central  Google Scholar 

  14. Wu, H.J., Ma, Y.K., Chen, T., Wang, M., and Wang, X.J., PsRobot: a web-based plant small RNA meta-analysis toolbox, Nucleic Acids Res., 2012, vol. 40, p.W22.https://doi.org/10.1093/nar/gks554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Fahlgren, N., and Carrington, J. C., miRNA target prediction in plants, Methods Mol. Biol., 2010, vol. 592, p. 51. https://doi.org/10.1007/978-1-60327-005-2_4

    Article  CAS  PubMed  Google Scholar 

  16. Wang, L., Feng, Z., Wang, X., Wang, X., and Zhang, X., DEGseq: an R package for identifying differentially expressed genes from RNA-seq data, Bioinformatics, 2010, vol. 26, p. 136. https://doi.org/10.1093/bioinformatics/btp612

    Article  CAS  PubMed  Google Scholar 

  17. Chin, A.R., Fong, M.Y., Somlo, G., Wu, J., Swiderski, P., Wu, X., and Wang, S.E., Cross-kingdom inhibition of breast cancer growth by plant miR159, Cell Res., 2016, vol. 26, p. 217. https://doi.org/10.1038/cr.2016.13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zhang, S., Sang, X., Hou, D., Chen, J., Gu, H., Zhang, Y., Li, J., Yang, D., Zhu, H., Yang, X., Wang, F., Zhang, C., Chen, X., Zen, K., Zhang, C.Y., et al., Plant-derived RNAi therapeutics: A strategic inhibitor of HBsAg, Biomaterials, 2019, vol. 210, p. 83. https://doi.org/10.1016/j.biomaterials.2019.04.033

    Article  CAS  PubMed  Google Scholar 

  19. Wang, Y., Peng, M., Chen, Y., Wang, W., He, Z., Yang, Z., Lin, Z., Gong, M., Yin, Y., and Zeng, Y., Analysis of Panax ginseng miRNAs and their target prediction based on high-throughput sequencing, Planta Med., 2019, vol. 85, p. 1168. https://doi.org/10.1055/a-0989-7302

    Article  CAS  PubMed  Google Scholar 

  20. Moura, M.M., Cavaco, B.M., and Leite, V., RAS proto-oncogene in medullary thyroid carcinoma, Endocr. Relat. Cancer, 2015, vol. 22, p. R235. https://doi.org/10.1530/ERC-15-0070

    Article  CAS  PubMed  Google Scholar 

  21. Liao, T.J., Jang, H., Fushman, D., and Nussinov, R., Allosteric KRas4B can modulate SOS1 fast and slow Ras activation Cycles, Biophys. J., 2018, vol. 115, p. 629. https://doi.org/10.1016/j.bpj.2018.07.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Huang, W.Y.C., Alvarez, S., Kondo, Y., Lee, Y.K., Chung, J.K., Lam, H.Y.M., Biswas, K.H., Kuriyan, J., and Groves, J.T., A molecular assembly phase transition and kinetic proofreading modulate Ras activation by SOS, Science, 2019, vol. 363, p. 1098. https://doi.org/10.1126/science.aau5721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hillig, R.C., and Bader, B., Targeting RAS oncogenesis with SOS1 inhibitors, Adv. Cancer Res., 2022, vol. 153, p. 169. https://doi.org/10.1016/bs.acr.2021.07.001

    Article  CAS  PubMed  Google Scholar 

  24. Fu, N.J., Xi, R.Y., Shi, X.K., Li, R.Z., Zhang, Z.H., Li, L.Y., Zhang, G.L., and Wang, F., Hexachlorophene, a selective SHP2 inhibitor, suppresses proliferation and metastasis of KRAS-mutant NSCLC cells by inhibiting RAS/MEK/ERK and PI3K/AKT signaling pathways, Toxicol. Appl. Pharmacol., 2022, vol. 441, p. 115988. https://doi.org/10.1016/j.taap.2022.115988

    Article  CAS  PubMed  Google Scholar 

  25. Cheng, M., Ye, X., Dai, J., and Sun, F., SOS1 promotes epithelial-mesenchymal transition of Epithelial Ovarian Cancer(EOC) cells through AKT independent NF-κB signaling pathway, Transl. Oncol., 2021, vol. 14, p. 101160. https://doi.org/10.1016/j.tranon.2021.101160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Lin, C., Gao, B., Yan, X., Lei, Z., Chen, K., Li, Y., Zeng, Q., Chen, Z., and Li, H., MicroRNA 628 suppresses migration and invasion of breast cancer stem cells through targeting SOS1, Onco Targets Ther., 2018, vol. 11, p. 5419. https://doi.org/10.2147/OTT.S164575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Tang G., siRNA and miRNA: an insight into RISCs, Trends Biochem. Sci., 2005, vol. 30, p. 106. https://doi.org/10.1016/j.tibs.2004.12.007

    Article  CAS  PubMed  Google Scholar 

  28. Nagaraju, G.P., Mezina, A., Shaib, W.L., Landry, J., and El-Rayes, B.F., Targeting the Janus-activated kinase-2-STAT3 signalling pathway in pancreatic cancer using the HSP90 inhibitor ganetespib, Eur. J. Cancer, 2016, vol. 52, p. 109. https://doi.org/10.1016/j.ejca.2015.10.057

    Article  CAS  PubMed  Google Scholar 

  29. Pang, C., Gu, Y., Ding, Y., Ma, C., Yv, W., Wang, Q., and Meng, B., Several genes involved in the JAK-STAT pathway may act as prognostic markers in pancreatic cancer identified by microarray data analysis, Medicine (Baltimore), 2018, vol. 97, p. e13297. https://doi.org/10.1097/MD.0000000000013297

    Article  CAS  PubMed  Google Scholar 

  30. Shahmarvand, N., Nagy, A., Shahryari, J., and Ohgami, R.S., Mutations in the signal transducer and activator of transcription family of genes in cancer, Cancer Sci., 2018, vol. 109, p. 926. https://doi.org/10.1111/cas.13525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Rampal, R.K., Pinzon-Ortiz, M., Somasundara, A.V.H., Durham, B., Koche, R., Spitzer, B., Mowla, S., Krishnan, A., Li, B., An, W., Derkach, A., Devlin, S., Rong, X., Longmire, T., Eisman, S.E., et al., Therapeutic efficacy of combined JAK1/2, Pan-PIM, and CDK4/6 inhibition in myeloproliferative neoplasms, Clin. Cancer Res., 2021, vol. 27, p. 3456. https://doi.org/10.1158/1078-0432.CCR-20-4898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Lonard, D.M., and O’Malley, B.W., Molecular pathways: Targeting steroid receptor coactivators in cancer, Clin. Cancer Res., 2016, vol. 22, p. 5403. https://doi.org/10.1158/1078-0432.CCR-15-1958

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Wang, L., Li, W., Li, K., Guo, Y., Liu, D., Yao, Z., Lin, X., Li, S., Jiang, Z., Liu, Q., Jiang, Y., Zhang, B., Chen, L., Zhou, F., Ren, H., et al., The oncogenic roles of nuclear receptor coactivator 1 in human esophageal carcinoma, Cancer Med., 2018, vol. 7, p. 5205. https://doi.org/10.1002/cam4.1786

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Tai, H., Kubota, N., and Kato, S., Involvement of nuclear receptor coactivator SRC-1 in estrogen-dependent cell growth of MCF-7 cells, Biochem.Biophys. Res Commun., 2000, vol. 267, p. 311. https://doi.org/10.1006/bbrc.1999.1954

    Article  CAS  PubMed  Google Scholar 

  35. Zhang, Y., Duan, C., Bian, C., Xiong, Y., and Zhang, J., Steroid receptor coactivator-1: a versatile regulator and promising therapeutic target for breast cancer, J. Steroid Biochem. Mol. Biol., 2013, vol. 138, p. 17. https://doi.org/10.1016/j.jsbmb.2013.02.010

    Article  CAS  PubMed  Google Scholar 

  36. Lee, Y., Heo, J., Jeong, H., Hong, K.T., Kwon, D.H., Shin, M.H., Oh, M., Sable, G.A., Ahn, G.O., Lee, J.S., Song, H.K., and Lim, H.S., Targeted degradation of transcription coactivator SRC-1 through the N-degron pathway, Angew. Chem. Int. Ed. Engl., 2020, vol. 59, p. 17548. https://doi.org/10.1002/anie.202005004

    Article  CAS  PubMed  Google Scholar 

  37. Qin, L., Chen, J., Lu, D., Jain, P., Yu, Y., Cardenas, D., Peng, X., Yu, X., Xu, J., Wang, J., O’Malley, B.W., and Lonard, D.M., Development of improved SRC-3 inhibitors as breast cancer therapeutic agents, Endocr. Relat. Cancer, 2021, vol. 28, p. 657. https://doi.org/10.1530/ERC-20-0402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Guo, P., Chen, Q., Peng, K., Xie, J., Liu, J., Ren, W., Tong, Z., Li, M., Xu, J., Zhang, Y., Yu, C., and Mo, P., Nuclear receptor coactivator SRC-1 promotes colorectal cancer progression through enhancing GLI2-mediated Hedgehog signaling, Oncogene, 2022, vol. 41, p. 2846. https://doi.org/10.1038/s41388-022-02308-8

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to Beijing University of Chinese Medicine for providing the platform for analysis and the Project “Research Project on Customization and Full Traceability Technology of Precise Mongolian Herbs (ZY20201231, no. 90020271520010)” and the Project “Research on Precise Traceability Standards and Key Technologies for Centralized Procurement of Traditional Chinese Medicine Materials/Slices (no. 2022110031015543)”.

Funding

Research Project on Customization and Full Traceability Technology of Precise Mongolian Herbs (ZY20201231, no. 90020271520010), Research on Precise Traceability Standards and Key Technologies for Centralized Procurement of Traditional Chinese Medicine Materials/Slices (no. 2022110031015543).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design.Conception and design of the work, analysis and interpretation of the data, statistical analysis, drafting the manuscript were performed by Ding Lixue; data collection was performed by Chen Wanjin; critical revision of the manuscriptwas performed by Shi Yue and Liu Wenqing, Wang Xiaohui; samples collectionwas performed by Liu Fengbo and Zhao Ting; design of the studywas performed by Wei Shengli and Zhang Yuan. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to S. Wei or Y. Zhang.

Ethics declarations

COMPLIANCE WITH ETHICAL STANDARDS

This article does not contain any research involving people as objects of research.

CONFLICT OF INTEREST

The authors declare that they have no conflict of interest.

Additional information

Abbreviations: GO—Gene ontology; JAK1—Janus Kinases 1; KEGG—Kyoto Encyclopedia of Genes and Genomes; nt—nucleotides; SOS1—Son of sevenless 1; TCM—traditional Chinese medicine; UMI—unique molecular identifiers.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, L., Chen, W., Shi, Y. et al. Study on Exploration Potential Anti-Cancer Activity miRNAs and Its Expression Rule Related to Growth Years in Mountain-Cultivated Ginseng. Russ J Plant Physiol 70, 62 (2023). https://doi.org/10.1134/S1021443723600551

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1134/S1021443723600551

Keywords:

Navigation