Skip to main content
Log in

Identification of a Regulatory Module (PsMYB12L/PsDFR) with Potential Involved in Double-Color Formation in Paeonia suffruticosa “Shima Nishiki”

  • RESEARCH PAPERS
  • Published:
Russian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

Paeonia suffruticosa “Shima Nishiki” is a extremely precious double-color cultivar in the world because of its unique and attractive flower color. However, the underlying molecular mechanisms of its double-color formation have not been completely unravelled until now. In the present study, firstly, the full-length cDNA sequence, genomic DNA sequence, promoter region sequence of the key structural gene (PsDFR) in the red and pink petals of the “Shima Nishiki” cultivar were cloned and analyzed, respectively. Meanwhile, the methylation level of CpG island and promoter region of this gene in the red and pink petals was also measured. Moreover, the identification of regulatory effect of PsMYB114L/PsMYB12L and PsDFR was performed. Here, we found that the full-length cDNA sequence, genomic DNA sequence, promoter region sequence of PsDFR were identical in the red and pink petals. There were some differences for the methylation level of this gene in the red and pink petals, but these differences were little and did not show obvious regularity. Therefore, the differential expression of PsDFR should be not caused by its own sequence differences. In addition, the regulatory effect of PsMYB12L and PsDFR was successfully identified. Based on these above results, we concluded that PsMYB12L regulating the differential expression of PsDFR may be a key reason for the double-color formation. These results will advance our understanding of the molecular regulatory mechanisms of double-color formation in P. suffruticosa “Shima Nishiki”.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Zhang, J.J., Shu, Q.Y., Liu, Z.A., Ren, H.X., Wang, L.S., and De Keyser, E., Two EST-derived marker systems for cultivar identification in tree peony, Plant Cell Rep., 2011, vol. 31, p. 299. https://doi.org/10.1007/s00299-011-1164-1

    Article  CAS  PubMed  Google Scholar 

  2. Zhao, D.Q., Tang, W.H., Hao, Z.J., and Tao, J., Identification of flavonoids and expression of flavonoid biosynthetic genes in two coloured tree peony flowers, Biochem. Biophys. Res. Commun., 2015, vol. 459, p. 450. https://doi.org/10.1016/j.bbrc.2015.02.126

    Article  CAS  PubMed  Google Scholar 

  3. Zhang, X.P., Zhao, M.Y., Guo, J., Zhao, L.Y., and Xu, Z.D., Anatomical and biochemical analyses reveal the mechanism of double-color formation in Paeonia suffruticosa ‘Shima Nishiki’, 3 Biotech, 2018, vol. 8, p. 420. https://doi.org/10.1007/s13205-018-1459-9

  4. Zhao, D.Q. and Tao, J., Recent advances on the development and regulation of flower color in ornamental plants, Front. Plant Sci., 2015, vol. 6, p. 261. https://doi.org/10.3389/fpls.2015.00261

    Article  PubMed  PubMed Central  Google Scholar 

  5. Noman, A., Aqeel, M., Deng, J.M., Khalid, N., Sanaullah, T., and He, S.H., Biotechnological advancements for improving floral attributes in ornamental plants, Front. Plant Sci., 2017, vol. 8, p. 530. https://doi.org/10.3389/fpls.2017.00530

    Article  PubMed  PubMed Central  Google Scholar 

  6. Nishihara, M. and Nakatsuka, T., Genetic engineering of flavonoid pigments to modify flower color in floricultural plants, Biotechnol. Lett., 2011, vol. 33, p. 433. https://doi.org/10.1007/s10529-010-0461-z

    Article  CAS  PubMed  Google Scholar 

  7. Miyagawa, N., Miyahara, T., Okamoto, M., Hirose, Y., Sakaguchi, K., Hatano, S., and Ozeki, Y., Dihydroflavonol 4-reductase activity is associated with the intensity of flower colors in delphinium, Plant Biotechnol., 2015, vol. 32, p. 249. https://doi.org/10.5511/plantbiotechnology.15.0702b

    Article  CAS  Google Scholar 

  8. Sánchez-Cabrera, M., Jiménez-López, F.J., Narbona, E., Arista, M., Ortiz, P.L., Romero-Campero, F.J., Ramanauskas, K., Igić, B., Fuller, A.A., and Whittall, J.B., Changes at a critical branchpoint in the anthocyanin biosynthetic pathway underlie the blue to orange flower color transition in Lysimachia arvensis, Front Plant Sci., 2021, vol. 12, p. 247. https://doi.org/10.3389/fpls.2021.633979

    Article  Google Scholar 

  9. Chen, S.M., Li, C.H., Zhu, X.R., Deng, Y.M., Sun, W., Wang, L.S., Chen, F.D., and Zhang, Z., The identification of flavonoids and the expression of genes of anthocyanin biosynthesis in the chrysanthemum flowers, Biol. Plant, 2012, vol. 56, p. 458. https://doi.org/10.1007/s10535-012-0069-3

    Article  CAS  Google Scholar 

  10. Zhu, Y.J. and Bao, Y., Genome-wide mining of MYB transcription factors in the anthocyanin biosynthesis pathway of Gossypium hirsutum, Biochem. Genet., 2021, vol. 59, p. 678. https://doi.org/10.1007/s10528-021-10027-0

    Article  CAS  PubMed  Google Scholar 

  11. Nakatsuka, T., Nishihara, M., Mishiba, K., and Yamamura, S., Temporal expression of flavonoid biosynthesis-related genes regulates flower pigmentation in gentian plants, Plant Sci., 2005, vol. 168, p. 1309. https://doi.org/10.1016/j.plantsci.2005.01.009

    Article  CAS  Google Scholar 

  12. Petroni, K. and Tonelli, C., Recent advances on the regulation of anthocyanin synthesis in reproductive organs, Plant Sci., 2011, vol. 181, p. 219. https://doi.org/10.1016/j.plantsci.2011.05.009

    Article  CAS  PubMed  Google Scholar 

  13. Albert, N.W., Davies, K.M., Lewis, D.H., Zhang, H.B., Montefiori, M., Brendolise, C., Boase, M.R., Ngo, H., Jameson, P.E., and Schwinn, K.E., A conserved network of transcriptional activators and repressors regulates anthocyanin pigmentation in eudicots, Plant Cell, 2014, vol. 26, p. 962. https://doi.org/10.1105/tpc.113.122069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zhang, X.P., Xu Z.D., Yu, X.Y., Zhao, L.Y., Zhao, M.Y., Han, X., and Qi, S., Identification of two novel R2R3-MYB transcription factors, PsMYB114L and PsMYB12L, related to anthocyanin biosynthesis in Paeonia suffruticosa, Int. J. Mol. Sci., 2019, vol. 20, p. 1055. https://doi.org/10.3390/ijms20051055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Rouholamina, S., Zahedia, B., Nazarian-Firouzabadib, F., and Saei, A., Expression analysis of anthocyanin biosynthesis key regulatory genes involved in pomegranate (Punica granatum L.), Sci. Hortic., 2015, vol. 186, p. 84. https://doi.org/10.1016/j.scienta.2015.02.017

    Article  CAS  Google Scholar 

  16. Hichri, I., Barrieu, F., Bogs, J., Kappel, C., Delrot, S., and Lauvergeat, V., Recent advances in the transcriptional regulation of the flavonoid biosynthetic pathway, J. Exp. Bot., 2011, vol. 62, p. 2465. https://doi.org/10.1093/jxb/erq442

    Article  CAS  PubMed  Google Scholar 

  17. Schaart, J.G., Dubos, C., De La Fuente, I.R., van Houwelingen, A.M.M.L., de Vos, R.C.H., Jonker, H.H., Xu, W.J., Routaboul, J.M., Lepiniec, L., and Bovy, A.G., Identification and characterization of MYB-bHLH-WD40 regulatory complexes controlling proanthocyanidin biosynthesis in strawberry (Fragaria × ananassa) fruits, New Phytol., 2013, vol. 197, p. 454. https://doi.org/10.1111/nph.12017

    Article  CAS  PubMed  Google Scholar 

  18. Sakai, M., Yamagishi, M., and Matsuyama, K., Repression of anthocyanin biosynthesis by R3-MYB transcription factors in lily (Lilium spp.), Plant Cell Rep., 2019, vol. 38, p. 609. https://doi.org/10.1007/s00299-019-02391-4

    Article  CAS  PubMed  Google Scholar 

  19. Pérez-Díaz, J.R., Pérez-Díaz, J., Madrid-Espinoza, J., González-Villanueva, E., Moreno, Y., and Ruiz-Lara, S., New member of the R2R3-MYB transcription factors family in grapevine suppresses the anthocyanin accumulation in the flowers of transgenic tobacco, Plant Mol. Biol., 2016, vol. 90, p. 63. https://doi.org/10.1007/s11103-015-0394-y

    Article  CAS  PubMed  Google Scholar 

  20. Yamagishi, M. and Sakai, M., The microRNA828/MYB12 module mediates bicolor pattern development in Asiatic Hybrid Lily (Lilium spp.) flowers, Front. Plant Sci., 2020, vol. 11, p. 590791. https://doi.org/10.3389/fpls.2020.590791

    Article  PubMed  PubMed Central  Google Scholar 

  21. Borevitz, J.O., Xia, Y.J., Blount, J., Dixon, R.A., and Lamb, C., Activation tagging identifies a conserved MYB regulator of phenylpropanoid biosynthesis, Plant Cell, 2000, vol. 12, p. 2383. https://doi.org/10.1105/tpc.12.12.2383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Gonzalez, A., Zhao, M.Z., Leavitt, J.M., and Lloyd, A.M., Regulation of the anthocyanin biosynthetic pathway by the TTG1/bHLH/Myb transcriptional complex in Arabidopsis seedlings, Plant J., 2008, vol. 53, p. 814. https://doi.org/10.1111/j.1365-313X.2007.03373.x

    Article  CAS  PubMed  Google Scholar 

  23. Gu, Z.Y., Zhu, J., Hao, Q., Yuan, Y.W., Duan, Y.W., Men, S.Q., Wang, Q.Y., Hou, Q.Z., Liu, Z.A., Shu, Q.Y., and Wang, L.S., A novel R2R3-MYB transcription factor contributes to petal blotch formation by regulating organ-specific expression of PsCHS in tree peony (Paeonia suffruticosa), Plant Cell Physiol., 2019, vol. 60, p. 599. https://doi.org/10.1093/pcp/pcy232

    Article  CAS  PubMed  Google Scholar 

  24. Zhang, Y.Z., Xu, S.Z., Ma, H.P., Duan, X.J., Gao, S.X., Zhou X.J., and Cheng, Y.W., The R2R3-MYB gene PsMY-B58 positively regulates anthocyanin biosynthesis in tree peony flowers., Plant Physiol. Biotech., 2021, vol. 164, p. 279. https://doi.org/10.1016/j.plaphy.2021.04.034

    Article  CAS  Google Scholar 

  25. Hosoki, T., Hamada, M., Kando, T., Moriwaki, R., and Inaba, K., Comparative study of anthocyanins in tree peony flowers, J. Jpn. Soc. Hortic. Sci., 1991, vol. 60, p. 395. https://doi.org/10.2503/jjshs.60.395

    Article  CAS  Google Scholar 

  26. Wang, L.S., Shiraishi, A., Hashimoto, F., Aoki, N., Shimizu, K., and Sakata, Y., Analysis of petal anthocyanins to investigate flower coloration of Zhongyuan (Chinese) and Daikon Island (Japanese) tree peony cultivars, J. Plant Res., 2001, vol. 114, p. 33. https://doi.org/10.1007/PL00013966

    Article  CAS  Google Scholar 

  27. Zhang, C., Wang, W.N., Wang, Y.J., Gao, S.L., Du, D.N., Fu, J.X., and Dong, L., Anthocyanin biosynthesis and accumulation in developing flowers of tree peony (Paeonia suffruticosa) ‘Luoyang Hong’, Postharvest Biol. Technol., 2014, vol. 97, p. 11. https://doi.org/10.1016/j.postharvbio.2014.05.019

    Article  CAS  Google Scholar 

  28. Gao, L.X., Yang, H.X., Liu, H.F., Yang, J., and Hu, Y.H., Extensive transcriptome changes underlying the flower color intensity variation in Paeonia ostii, Front. Plant Sci., 2016, vol. 6, p. 1205. https://doi.org/10.3389/fpls.2015.01205

    Article  PubMed  PubMed Central  Google Scholar 

  29. Zhang, Y.Z., Cheng, Y.W., Xu, S.Z., Ma, H.P., Han, J.M., and Zhang, Y., Tree peony variegated flowers show a small insertion in the F3’H gene of the acyanic flower parts, BMC Plant Biol., 2020, vol. 20, p. 211. https://doi.org/10.1186/s12870-020-02428-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zhang, X.P., Zhao, L.Y., Xu, Z.D., and Yu, X.Y., Transcriptome sequencing of Paeonia suffruticosa ‘Shima Nishiki’to identify differentially expressed genes mediating double-color formation, Plant Physiol. Biochem., 2018, vol. 123, p. 114. https://doi.org/10.1016/j.plaphy.2017.12.009

    Article  CAS  PubMed  Google Scholar 

  31. Ren, H., Wen, L.Z., Guo, Y.H., Yu, Y.Y., Sun, C.H., Fan, H.M., Ma, F.F., and Zheng, C.S., Expressional and functional verification of the involvement of CmEXPA4 in Chrysanthemum root development., J. Plant Growth Regul, 2019, vol. 38, p. 1375. https://doi.org/10.1007/s00344-019-09940-x

    Article  CAS  Google Scholar 

  32. Wang, Y.J., Dong, L., Zhang, C., and Wang, X.Q., Reference gene selection for real-time quantitative PCR normalization in tree peony (Paeonia suffruticosa Andr.), J. Agric. Biotechnol., 2012, vol. 20, p. 521. https://doi.org/10.3969/j.issn.1674-7968.2012.05.008

    Article  CAS  Google Scholar 

  33. Schmittgen, T.D. and Livak, K.J., Analyzing real-time PCR data by the comparative C(T) method, Nat. Protoc., 2008, vol. 3, p. 1101. https://doi.org/10.1038/nprot.2008.73

    Article  CAS  PubMed  Google Scholar 

  34. Jia, N., Liu, J.Q., Sun, Y.F., Tan, P.H., Cao, H., Xie, Y.Y., BotingWen, B.T., Gu, T.Y., Liu, M.J., Li, M.M., Huang, Y.T., Lu, J., Jin, N., Sun, L.C., Xin, F.J., and Fan, B., Citrus sinensis MYB transcription factors CsMYB330 and CsMYB308 regulate fruit juice sac lignification through fine-tuning expression of the Cs4CL1 gene, Plant Sci., 2018, vol. 277, p. 334. https://doi.org/10.1016/j.plantsci.2018.10.006

    Article  CAS  PubMed  Google Scholar 

  35. An, J.P., Yao, J.F., Xu, R.R., You, C.X., Wang, X.F., and Hao, Y.J., Apple bZIP transcription factor MdbZ-IP44 regulates abscisic acid-promoted anthocyanin accumulation, Plant Cell Environ., 2018, vol. 41, p. 2678. https://doi.org/10.1111/pce.13393

    Article  CAS  PubMed  Google Scholar 

  36. Inagaki, Y., Hisatomi, Y., Suzuki, T., Kasahara, K., and Iida, S., Isolation of a suppressor-mutator/enhancer-like transposable element, Tpn1, from Japanese morning glory bearing variegated flowers, Plant Cell, 1994, vol. 6, p. 375. https://doi.org/10.1105/tpc.6.3.375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Sato, M., Kawabe, T., Hosokawa, M., Tatsuzawa, F., and Doi, M., Tissue culture-induced flower-color changes in Saintpaulia caused by excision of the transposon inserted in the flavonoid 3’,5’ hydroxylase (F3’5’H) promoter, Plant Cell Rep., 2011, vol. 30, p. 929. https://doi.org/10.1007/s00299-011-1016-z

    Article  CAS  PubMed  Google Scholar 

  38. Suzuki, M., Miyahara, T., Tokumoto, H., Hakamatsuka, T., Goda, Y., Ozeki, Y., and Sasaki, N., Transposon-mediated mutation of CYP76AD3 affects betalain synthesis and produces variegated flowers in four o’clock (Mirabilis jalapa), J. Plant Physiol., 2014, vol. 171, p. 1586. https://doi.org/10.1016/j.jplph.2014.07.010

    Article  CAS  PubMed  Google Scholar 

  39. Sasaki, N., Nishizaki, Y., Uchida, Y., Wakamatsu, E., Umemoto, N., Momose, M., Okamura, M., Yoshida, H., Yamaguchi, M., Nakayama, M., Ozeki, Y., and Itoh, Y., Identification of the glutathione S-transferase gene responsible for flower color intensity in carnations, Plant Biotechnol., 2012, vol. 29, p. 223. https://doi.org/10.5511/plantbiotechnology.12.0120a

    Article  CAS  Google Scholar 

  40. Liu, X.J., Chuang, Y.N., Chiou, C.Y., Chin, D.C., Shen, F.Q., and Yeh, K.W., Methylation effect on chalcone synthase gene expression determines anthocyanin pigmentation in floral tissues of two Oncidium orchid cultivars, Planta, 2012, vol. 236, p. 401. https://doi.org/10.1007/s00425-012-1616-z

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS

We would like to thank Wenshuang Zhao for his invaluable help and assistance.

Funding

This research was funded by Natural Science Foundation of Shandong Province (ZR2022MC013), Agricultural improved variety project of Shandong Province (2020LZGC011-1) and Doctoral fund project of Shandong Jianzhu University (X20021S0101).

Author information

Authors and Affiliations

Authors

Contributions

X.P. Zhang and X. Han have contributed equally to this work and share first authorship. Z.D. Xu and J.Q. Chen conceived and designed the research. X.P. Zhang and X. Han participated in the specific design of the study. X.P. Zhang and X. Han performed the experiments and the data analysis, and drafted the manuscript. M.Y. Zhao, S.J. Lu, X.Y. Yu, Y.F. Fang, C. Li contributed analysis tools and helped analyze the data. All authors contributed to manuscript revision and approved the final version.

Corresponding authors

Correspondence to Z. D. Xu or J. Q. Chen.

Ethics declarations

COMPLIANCE WITH ETHICAL STANDARDS

This article does not contain any studies involving animals or human participants as objects of research.

CONFLICT OF INTEREST

The authors declare that they have no conflicts of interest.

Additional information

Abbreviations: ANS—anthocyanidin synthase gene; CHS—chalcone synthase gene; CHI—chalcone isomerase gene; DFR—dihydroflavonol 4-reductase gene; F3H—flavanone 3-hydroxylase gene; F3'H—flavonoid 3'-hydroxylase gene; SN-Pink—pink petal; SN-Red—red petal; TFs—transcription factors.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X.P., Han, X., Zhao, M.Y. et al. Identification of a Regulatory Module (PsMYB12L/PsDFR) with Potential Involved in Double-Color Formation in Paeonia suffruticosa “Shima Nishiki”. Russ J Plant Physiol 70, 26 (2023). https://doi.org/10.1134/S1021443722601823

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1134/S1021443722601823

Keywords:

Navigation