Skip to main content
Log in

Diversity of Types of Plant Diacylglycerol Acyltransferases, Peculiarities of Their Functioning, and How Many DGATs are Required for Plants

  • REVIEWS
  • Published:
Russian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract—

Emergence of sn-1,2-diacylglycerol-3-acyltransferases (DGATs)—the key enzymes of triacylglycerol (TAG) biosynthesis—may be regarded as an important aromorphosis in the evolution of the organic world in general and that of plants in particular. In fact, the newly originated ability to store carbon, energy, water, and “building blocks” in a form of hydrophobic compounds enabled increasing the “capacity” of storage compounds in the cells and to simultaneously reduce volumes of storage organs. DGATs are present in almost any organisms from myxomycetes, mosses, fungi, and algae to mammals, including humans. Although these enzymes are so widespread in a world of live matter, it is difficult to follow principles of their organization, evolution, and functioning because an organism may possess several DGATs belonging to different types, differently localized in the cell, and employing different substrates or competing for one substrate. They are relatives owing to only one common function—the transfer of a fatty acid residue from acyl-CoA to sn-1,2-diacyl-glycerol yielding a TAG molecule. In some cases, DGATs can acylate sterols, higher fatty alcohols, and other substrates bringing about the same product. Intense investigations of these enzymes have been continuing for the last 50 years and they present more questions than answers so far. However, clear comprehension of the traits of organization and function of DGATs opens up fantastic prospects in biotechnology and genetic engineering of functional lipids for food and pharmaceutical industries, and agriculture. This review attempts to summarize the recent data on structural and functional peculiarities of DGATs, effects of endogenous and exogenous factors on the expression levels of their genes, and the adaptive roles of these genes in the evolution of living organisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Statistical information database, 2001. https://www. statista.com/statistics/263978/global-vegetable-oil-production-since-2000-2001/. Cited January 27, 2021.

  2. Biodiesel information database, 2021. http://biodiesel. org/production/production-statistics. Cited May 7, 2021.

  3. Economic Research Service, US Department of Agriculture, 2021. https://www.ers.usda.gov/data-products/ us-bioenergy-statistics/. Cited April 20, 2021.

  4. US Department of Agriculture, 2021. http://usda.mannlib.cornell.edu/MannUsda/viewDocumentInfo.do? documentID=1290. Cited May 7, 2021.

  5. Zweytick D., Athenstaedt K., and Daum G., Intracellular lipid particles of eukaryotic cells, Biochim. Biophys. Acta, Rev. Biomembr., 2000, vol. 1469, p. 101. https://doi.org/10.1016/S0005-2736(00)00294-7

    Article  CAS  Google Scholar 

  6. Vereshchagin, A.G., Biokhimiya triglitseridov (Biochemistry of Triglycerides), Moscow: Nauka, 1972.

  7. Rezanka, T., Lukavsky, J., Nedbalova, L., and Sigler, K., Production of structured triacylglycerols from microalgae, Phytochemistry, 2014, vol. 104, p. 95. https://doi.org/10.1016/J.PHYTOCHEM.2014.04.013

    Article  CAS  PubMed  Google Scholar 

  8. Mu, H. and Porsgaard, T., The metabolism of structured triacylglycerols, Prog. Lipid Res., 2005, vol. 44, p. 430. https://doi.org/10.1016/J.PLIPRES.2005.09.002

    Article  CAS  PubMed  Google Scholar 

  9. Kubow, S., The influence of positional distribution of fatty acids in native, interesterified and structure-specific lipids on lipoprotein metabolism and atherogenesis, J. Nutr. Biochem., 1996, vol. 7, p. 530. https://doi.org/10.1016/S0955-2863(96)00106-4

    Article  CAS  Google Scholar 

  10. Quinlan, P. and Moore, S., Modification of triglycerides by lipases: process technology and its application to the production of nutritionally improved fats, Inform, 1993, vol. 4, p. 580.

    Google Scholar 

  11. Takeuchi, H., Kasai, M., Taguchi, N., Tsuji, H., and Suzuki, M., Effect of triacylglycerols containing medium- and long-chain fatty acids on serum triacylglycerol levels and body fat in college athletes, J. Nutr. Sci. Vitaminol., 2002, vol. 48, p. 109. https://doi.org/10.3177/jnsv.48.109

    Article  CAS  PubMed  Google Scholar 

  12. Kunesova, M., Braunerova, R., Hlavaty, P., Tvrzicka, E., Stankova, B., Skrha, J., Hilgertova, J., Hill, M., Kopecky, J., Wagenknecht, M., Hainer, V., Matoulek, M., Parizkova, J., Zak, A., and Svacina, S., The influence of n-3 polyunsaturated fatty acids and very low calorie diet during a short-term weight reducing regimen on weight loss and serum fatty acid composition in severely obese women, Physiol. Res., 2006, vol. 55, p. 63.

    Article  CAS  Google Scholar 

  13. Andrikopoulos, N.K., Triglyceride species compositions of common edible vegetable oils and methods used for their identification and quantification, Food Rev. Int., 2002, vol. 18, p. 71. https://doi.org/10.1081/FRI-120003418

    Article  CAS  Google Scholar 

  14. Phillips, B.E. and Smith, C.R., Stereospecific analysis of triglycerides from Monnina emarginata seed oil, Lipids, 1972, vol. 7, p. 215. https://doi.org/10.1007/BF02533067

    Article  CAS  Google Scholar 

  15. Durrett T.P., McClosky D.D., Tumaney A.W., Elzinga D.A., Ohlrogge J., and Pollard, M., A distinct DGAT with sn-3 acetyltransferase activity that synthesizes unusual, reduced-viscosity oils in Euonymus and transgenic seeds., Proc. Natl. Acad. Sci. U.S.A., 2010, vol. 107, p. 9464. https://doi.org/10.1073/pnas.1001707107

    Article  PubMed  PubMed Central  Google Scholar 

  16. Sørensen, L.B., Cueto, H.T., Andersen, M.T., Bitz, C., Holst, J.J., Rehfeld, J.F., and Astrup, A., The effect of salatrim, a low-calorie modified triacylglycerol, on appetite and energy intake, Am. J. Clin. Nutr., 2008, vol. 87, p. 1163.

    Article  Google Scholar 

  17. Yang, H., Park, J., Yoon, J., Kim, M., Jhon, G., Han, S., and Kim, S., Stimulatory effects of monoacetyldiglycerides on hematopoiesis, Biol. Pharm. Bull., 2004, vol. 27, p. 1121.

    Article  CAS  Google Scholar 

  18. Jeong, J., Kim, Y.-J., Yoon, S.Y., Kim, Y.-J., Kim, J.H., Sohn, K.-Y., Kim, H.-J., Han, Y.-H., Chong, S., and Kim, J.W., PLAG (1-Palmitoyl-2-Linoleoyl-3-Acetyl-rac-Glycerol) modulates eosinophil chemotaxis by regulating CCL26 expression from epithelial cells, PLoS One., 2016, vol. 11, p. e0151758. https://doi.org/10.1371/journal.pone.0151758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kim, Y.-J., Jeong, J., Shin, S.-H., Lee, D.Y., Sohn, K.-Y., Yoon, S.Y., and Kim, J.W., Mitigating effects of 1-palmitoyl-2-linoleoyl-3-acetyl-rac-glycerol (PLAG) on hematopoietic acute radiation syndrome after total-body ionizing irradiation in mice, Radiat. Res., 2019, vol. 192, p. 602. https://doi.org/10.1667/rr15440.1

    Article  CAS  PubMed  Google Scholar 

  20. Jeong, J., Kim, Y.J., Lee, D.Y., Moon, B.G., Sohn, K.Y., Yoon, S.Y., and Kim, J.W., 1-Palmitoyl-2-linoleoyl-3-acetyl-rac-glycerol (PLAG) attenuates gemcitabine-induced neutrophil extravasation, Cell Biosci., 2019, vol. 9, p. 4. https://doi.org/10.1186/s13578-018-0266-7

    Article  PubMed  PubMed Central  Google Scholar 

  21. Řezanka, T., Schreiberová, O., Čejková, A., and Sigler, K., The genus Dracunculus—A source of triacylglycerols containing odd-numbered ω-phenyl fatty acids, Phytochemistry, 2011, vol. 72, p. 1914. https://doi.org/10.1016/J.PHYTOCHEM.2011.04.020

    Article  PubMed  Google Scholar 

  22. Kaneda, M., Mizutani, K., Takahashi, Y., Kurono, G., and Nishikawa, Y., Lilioside A and B—two new glycerol glucosides isolated from Lilium longifolium Thunb., Tetrahedron Lett., 1974, vol. 15, p. 3937.

    Article  Google Scholar 

  23. Athenstaedt, K. and Daum, G., The life cycle of neutral lipids: synthesis, storage and degradation, Cell. Mol. Life Sci., 2006, vol. 63, p. 1355. https://doi.org/10.1007/s00018-006-6016-8

    Article  CAS  PubMed  Google Scholar 

  24. Lung, S.-C. and Weselake, R.J., Diacylglycerol acyltransferase: a key mediator of plant triacylglycerol synthesis, Lipids, 2006, vol. 41, p. 1073.

    Article  CAS  Google Scholar 

  25. Dahlqvist, A., Stahl, U., Lenman, M., Banas, A., Lee, M., Sandager, L., Ronne, H., and Stymne, S., Phospholipid:diacylglycerol acyltransferase: an enzyme that catalyzes the acyl-CoA-independent formation of triacylglycerol in yeast and plants, Proc. Natl. Acad. Sci. U.S.A., 2000, vol. 97, p. 6487. https://doi.org/10.1073/pnas.120067297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kennedy, E.P., Biosynthesis of complex lipids, Fed. Proc., 1961, vol. 20, p. 934.

    CAS  PubMed  Google Scholar 

  27. Saha, S., Enugutti, B., Rajakumari, S., and Rajasekharan, R., Cytosolic triacylglycerol biosynthetic pathway in oilseeds. Molecular cloning and expression of peanut cytosolic diacylglycerol acyltransferase, Plant Physiol., 2006, vol. 141, p. 1533. https://doi.org/10.1104/pp.106.082198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Frentzen, M., Acyltransferases and triacylglycerols, in Lipid Metabolism in Plants, Moore, T.S., Ed., Boca Raton: CRC Press, 1993, p. 195.

    Google Scholar 

  29. Jako, C., Kumar, A., Wei, Y., Zou, J., Barton, D.L., Giblin, E.M., Covello, P.S., and Taylor, D.C., Seed-specific over-expression of an Arabidopsis cDNA encoding a diacylglycerol acyltransferase enhances seed oil content and seed weight., Plant Physiol., 2001, vol. 126, p. 861.

    Article  CAS  Google Scholar 

  30. Wang, H., Guo, J., Lambert, K.N., and Lin, Y., Developmental control of Arabidopsis seed oil biosynthesis, Planta, 2007, vol. 226, p. 773. https://doi.org/10.1007/s00425-007-0524-0

    Article  CAS  PubMed  Google Scholar 

  31. Weiss, S.B., Kesnedy, E.P., and Kiyasu, J.Y., The enzymatic synthesis of triglycerides, J. Biol. Chem., 1960, vol. 235, p. 40.

    Article  CAS  Google Scholar 

  32. Hofmann, K., A superfamily of membrane-bound O-acyltransferases with implications for Wnt signaling, Trends Biochem. Sci., 2000, vol. 25, p. 111. https://doi.org/10.1016/S0968-0004(99)01539-X

    Article  CAS  PubMed  Google Scholar 

  33. Hobbs, D.H., Lu, C., and Hills, M.J., Cloning of a cDNA encoding diacylglycerol acyltransferase from Arabidopsis thaliana and its functional expression, FEBS Lett., 1999, vol. 452, p. 145. https://doi.org/10.1016/S0014-5793(99)00646-8

    Article  CAS  PubMed  Google Scholar 

  34. Giannoulia, K., Haralampidis, K., Poghosyan, Z., Murphy, D.J., and Hatzopoulos, P., Differential expression of diacylglycerol acyltransferase (DGAT) genes in olive tissues, Biochem. Soc. Trans., 2000, vol. 28, p. 695. https://doi.org/10.1042/BST0280695

    Article  CAS  PubMed  Google Scholar 

  35. Nykiforuk, C.L., Furukawa-Stoffer, T.L., Huff, P.W., Sarna, M., Laroche, A., Moloney, M.M., and Weselake, R.J., Characterization of cDNAs encoding diacylglycerol acyltransferase from cultures of Brassica napus and sucrose-mediated induction of enzyme biosynthesis, Biochim. Biophys. Acta, Mol. Cell Biol. Lipids, 2002, vol. 1580, p. 95. https://doi.org/10.1016/S1388-1981(01)00200-1

    Article  CAS  Google Scholar 

  36. He, X., Turner, C., Chen, G.Q., Lin, J.-T., and McKeon, T.A., Cloning and characterization of a cDNA encoding diacylglycerol acyltransferase from castor bean, Lipids, 2004, vol. 39, p. 311. https://doi.org/10.1007/s11745-004-1234-2

    Article  CAS  PubMed  Google Scholar 

  37. Shockey, J.M., Gidda, S.K., Chapital, D.C., Kuan, J.-C., Dhanoa, P.K., Bland, J.M., Rothstein, S.J., Mullen, R.T., and Dyer, J.M., Tung tree DGAT1 and DGAT2 have nonredundant functions in triacylglycerol biosynthesis and are localized to different subdomains of the endoplasmic reticulum, Plant Cell, 2006, vol. 18, p. 2294. https://doi.org/10.1105/tpc.106.043695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Xu, J., Francis, T., Mietkiewska, E., Giblin, E.M., Barton, D.L., Zhang, Y., Zhang, M., and Taylor, D.C., Cloning and characterization of an acyl-CoA-dependent diacylglycerol acyltransferase 1 (DGAT1) gene from Tropaeolum majus, and a study of the functional motifs of the DGAT protein using site-directed mutagenesis to modify enzyme activity and oil content, Plant Biotechnol. J., 2008, vol. 6, p. 799. https://doi.org/10.1111/j.1467-7652.2008.00358.x

    Article  CAS  PubMed  Google Scholar 

  39. Sun, L., Ouyang, C., Kou, S., Wang, S., Yao, Y., Peng, T., Xu, Y., Tang, L., and Chen, F., Cloning and characterization of a cDNA encoding type 1 diacylglycerol acyltransferase from sunflower (Helianthus annuus L.), Z. Naturforsch., 2011, vol. 66, p. 63.

    Article  CAS  Google Scholar 

  40. Arroyo-Caro, J.M., Mañas-Fernández, A., Alonso, D.L., and García-Maroto, F., Type I diacylglycerol acyltransferase (mtdgat1) from Macadamia tetraphylla: cloning, characterization, and impact of its heterologous expression on triacylglycerol composition in yeast, J. Agric. Food Chem., 2016, vol. 64, p. 277. https://doi.org/10.1021/acs.jafc.5b04805

    Article  CAS  PubMed  Google Scholar 

  41. Zhou, X.-R., Shrestha, P., Yin, F., Petrie, J.R., and Singh, S.P., AtDGAT2 is a functional acyl-CoA:diacylglycerol acyltransferase and displays different acyl-CoA substrate preferences than AtDGAT1, FEBS Lett., 2013, vol. 587, p. 2371. https://doi.org/10.1016/j.febslet.2013.06.003

    Article  CAS  PubMed  Google Scholar 

  42. Banilas, G., Karampelias, M., Makariti, I., Kourti, A., and Hatzopoulos, P., The olive DGAT2 gene is developmentally regulated and shares overlapping but distinct expression patterns with DGAT1, J. Exp. Bot., 2011, vol. 62, p. 521. https://doi.org/10.1093/jxb/erq286

    Article  CAS  PubMed  Google Scholar 

  43. Hernández, M.L., Whitehead, L., He, Z., Gazda, V., Gilday, A., Kozhevnikova, E., Vaistij, F.E., Larson, T.R., and Graham, I.A., A cytosolic acyltransferase contributes to triacylglycerol synthesis in sucrose-rescued Arabidopsis seed oil catabolism mutants, Plant Physiol., 2012, vol. 160, p. 215. https://doi.org/10.1104/pp.112.201541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Rani, S.H., Saha, S., and Rajasekharan, R., A soluble diacylglycerol acyltransferase is involved in triacylglycerol biosynthesis in the oleaginous yeast Rhodotorula glutinis, Microbiology, 2013, vol. 159, p. 155. https://doi.org/10.1099/mic.0.063156-0

    Article  CAS  PubMed  Google Scholar 

  45. Bagnato, C., Prados, M.B., Franchini, G.R., Scaglia, N., Miranda, S.E., and Beligni, M.V., Analysis of triglyceride synthesis unveils a green algal soluble diacylglycerol acyltransferase and provides clues to potential enzymatic components of the chloroplast pathway, BMC Genomics, 2017, vol. 18, p. 223. https://doi.org/10.1186/s12864-017-3602-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Kalscheuer, R. and Steinbüchel, A., A novel bifunctional wax ester synthase/acyl-CoA:diacylglycerol acyltransferase mediates wax ester and triacylglycerol biosynthesis in Acinetobacter calcoaceticus ADP1, J. Biol. Chem., 2003, vol. 278, p. 8075. https://doi.org/10.1074/jbc.M210533200

    Article  CAS  PubMed  Google Scholar 

  47. King, A., Nam, J.W., Han, J., Hilliard, J., and Jaworski, J.G., Cuticular wax biosynthesis in petunia petals: cloning and characterization of an alcohol-acyltransferase that synthesizes wax-esters, Planta, 2007, vol. 226, p. 381. https://doi.org/10.1007/s00425-007-0489-z

    Article  CAS  PubMed  Google Scholar 

  48. Li, F., Wu, X., Lam, P., Bird, D., Zheng, H., Samuels, L., Jetter, R., and Kunst, L., Identification of the wax ester synthase/acyl-coenzyme A:diacylglycerol acyltransferase WSD1 required for stem wax ester biosynthesis in Arabidopsis, Plant Physiol., 2008, vol. 148, p. 97. https://doi.org/10.1104/pp.108.123471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Bansal, S. and Durrett, T.P., Defining the extreme substrate specificity of Euonymus alatus diacylglycerol acetyltransferase, an unusual membrane-bound O-acyltransferase, Biosci. Rep., 2016, vol. 36, p. e00406. https://doi.org/10.1042/BSR20160277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Petronikolou, N. and Nair, S.K., Structural and biochemical studies of a biocatalyst for the enzymatic production of wax esters, ACS Catal., 2018, vol. 8, p. 6334. https://doi.org/10.1021/acscatal.8b00787

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Cao, H., Structure-function analysis of diacylglycerol acyltransferase sequences from 70 organisms, BMC Res. Notes, 2011, vol. 4, p. 249. https://doi.org/10.1186/1756-0500-4-249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Lopes, J.L.S., Beltramini, L.M., Wallace, B.A., and Araujo, A.P.U., Deconstructing the DGAT1 enzyme: membrane interactions at substrate binding sites, PLoS One, 2015, vol. 10, p. e0124336. https://doi.org/10.1371/journal.pone.0118407

    Article  CAS  Google Scholar 

  53. Turchetto-Zolet, C.A., Christoff, P.A., Kulcheski, F.R., Loss-Morais, G., Margis, R., and Margis-Pinheiro, M., Diversity and evolution of plant diacylglycerol acyltransferase (DGATs) unveiled by phylogenetic, gene structure and expression analyses, Genet. Mol. Biol., 2016, vol. 39, p. 524. https://doi.org/10.1590/1678-4685-GMB-2016-0024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Light, S., Sagit, R., Ekman, D., and Elofsson, A., Long indels are disordered: a study of disorder and indels in homologous eukaryotic proteins, Biochim. Biophys. Acta, Proteins Proteomics, 2013, vol. 1834, p. 890. https://doi.org/10.1016/j.bbapap.2013.01.002

    Article  CAS  Google Scholar 

  55. Caldo, K.M.P., Acedo, J.Z., Panigrahi, R., Vederas, J.C., Weselake, R.J., and Lemieux, M.J., Diacylglycerol acyltransferase 1 is regulated by its N-terminal domain in response to allosteric effectors, Plant Physiol., 2017, vol. 175, p. 667. https://doi.org/10.1104/pp.17.00934

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Bürgi, J., Xue, B., Uversky, V.N., and Gisou van der Goot, F., Intrinsic disorder in transmembrane proteins: roles in signaling and topology prediction, PLoS One, 2016, vol. 11, p. e0158594. https://doi.org/10.1371/journal.pone.0158594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Trudeau, T., Nassar, R., Cumberworth, A., Wong, E.T.C., Woollard, G., and Gsponer, J., Structure and intrinsic disorder in protein autoinhibition, Structure, 2013, vol. 21, p. 332. https://doi.org/10.1016/j.str.2012.12.013

    Article  CAS  PubMed  Google Scholar 

  58. Wright, P.E. and Dyson, H.J., Intrinsically disordered proteins in cellular signaling and regulation, Nat. Rev. Mol. Cell Biol., 2015, vol. 16, p. 18. https://doi.org/10.1038/nrm3920

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Liu, Q., Siloto, R.M.P., Lehner, R., Stone, S.J., and Weselake, R.J., Acyl-CoA:diacylglycerol acyltransferase: molecular biology, biochemistry and biotechnology, Prog. Lipid Res., 2012, vol. 51, p. 350. https://doi.org/10.1016/j.plipres.2012.06.001

    Article  CAS  PubMed  Google Scholar 

  60. Lopes, J.L.S., Nobre, T.M., Cilli, E.M., Beltramini, L.M., Araújo, A.P.U., and Wallace, B.A., Deconstructing the DGAT1 enzyme: binding sites and substrate interactions, Biochim. Biophys. Acta, Biomembr., 2014, vol. 1838, p. 3145. https://doi.org/10.1016/J.BBAMEM.2014.08.017

    Article  CAS  Google Scholar 

  61. Xu, Y., Caldo, K.M.P., Pal-Nath, D., Ozga, J., Lemieux, M.J., Weselake, R.J., and Chen, G., Properties and biotechnological applications of acyl-CoA:diacylglycerol acyltransferase and phospholipid:diacylglycerol acyltransferase from terrestrial plants and microalgae, Lipids, 2018, vol. 53, p. 663. https://doi.org/10.1002/lipd.12081

    Article  CAS  PubMed  Google Scholar 

  62. McCartney, A.W., Dyer, J.M., Dhanoa, P.K., Kim, P.K., Andrews, D.W., McNew, J.A., and Mullen, R.T., Membrane-bound fatty acid desaturases are inserted co-translationally into the ER and contain different ER retrieval motifs at their carboxy termini, Plant J., 2004, vol. 37, p. 156. https://doi.org/10.1111/j.1365-313X.2004.01949.x

    Article  CAS  PubMed  Google Scholar 

  63. Mañas-Fernández, A., Vilches-Ferrón, M., Garrido-Cárdenas, J.A., Belarbi, E.H., Alonso, D.L., and García-Maroto, F., Cloning and molecular characterization of the acyl-CoA:diacylglycerol acyltransferase 1 (DGAT1) gene from Echium, Lipids, 2009, vol. 44, p. 555. https://doi.org/10.1007/s11745-009-3303-9

    Article  CAS  PubMed  Google Scholar 

  64. Jolivet, P., Boulard, C., Bellamy, A., Larré, C., Barre, M., Rogniaux, H., d’Andréa, S., Chardot, T., and Nesi, N., Protein composition of oil bodies from mature Brassica napus seeds, Proteomics, 2009, vol. 9, p. 3268. https://doi.org/10.1002/pmic.200800449

    Article  CAS  PubMed  Google Scholar 

  65. Zheng, P., Allen, W.B., Roesler, K., Williams, M.E., Zhang, S., Li, J., Glassman, K., Ranch, J., Nubel, D., Solawetz, W., Bhattramakki, D., Llaca, V., Deschamps, S., Zhong, G.Y., Tarczynski, M.C., and Shen, B., A phenylalanine in DGAT is a key determinant of oil content and composition in maize, Nat. Genet., 2008, vol. 40, p. 367. https://doi.org/10.1038/ng.85

    Article  CAS  PubMed  Google Scholar 

  66. Zhou, X.-R., Shrestha, P., Yin, F., Petrie, J.R., and Singh, S.P., AtDGAT2 is a functional acyl-CoA:diacylglycerol acyltransferase and displays different acyl-CoA substrate preferences than AtDGAT1, FEBS Lett., 2013, vol. 587, p. 2371. https://doi.org/10.1016/j.febslet.2013.06.003

    Article  CAS  PubMed  Google Scholar 

  67. Rosli, R., Chan, P.-L., Chan, K.-L., Amiruddin, N., Low, E.-T.L., Singh, R., Harwood, J.L., and Murphy, D.J., In silico characterization and expression profiling of the diacylglycerol acyltransferase gene family (DGAT1, DGAT2, DGAT3 and WS/DGAT) from oil palm, Elaeis guineensis, Plant Sci., 2018, vol. 275, p. 84. https://doi.org/10.1016/J.PLANTSCI.2018.07.011

    Article  CAS  PubMed  Google Scholar 

  68. Liu, Q., Siloto, R.M.P., Snyder, C.L., and Weselake, R.J., Functional and topological analysis of yeast acyl-CoA:diacylglycerol acyltransferase 2, an endoplasmic reticulum enzyme essential for triacylglycerol biosynthesis., J. Biol. Chem., 2011, vol. 286, p. 13115. https://doi.org/10.1074/jbc.M110.204412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Stone, S.J., Levin, M.C., and Farese, R.V., Membrane topology and identification of key functional amino acid residues of murine acyl-CoA:diacylglycerol acyltransferase-2, J. Biol. Chem., 2006, vol. 281, p. 40273. https://doi.org/10.1074/jbc.M607986200

    Article  CAS  PubMed  Google Scholar 

  70. Kroon, J.T.M., Wei, W., Simon, W.J., and Slabas, A.R., Identification and functional expression of a type 2 acyl-CoA:diacylglycerol acyltransferase (DGAT2) in developing castor bean seeds which has high homology to the major triglyceride biosynthetic enzyme of fungi and animals, Phytochemistry, 2006, vol. 67, p. 2541. https://doi.org/10.1016/J.PHYTOCHEM.2006.09.020

    Article  CAS  PubMed  Google Scholar 

  71. Cao, H., Shockey, J.M., Klasson, K.T., Chapital, D.C., Mason, C.B., and Scheffler, B.E., Developmental regulation of diacylglycerol acyltransferase family gene expression in tung tree tissues, PLoS One, 2013, vol. 8, p. e76946. https://doi.org/10.1371/journal.pone.0076946

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Aymé, L., Arragain, S., Canonge, M., Baud, S., Touati, N., Bimai, O., Jagic, F., Louis-Mondésir, C., Briozzo, P., Fontecave, M., and Chardot, T., Arabidopsis thaliana DGAT3 is a [2Fe-2S] protein involved in TAG biosynthesis, Sci. Rep., 2018, vol. 8. https://doi.org/10.1038/s41598-018-35545-7

  73. Chi, X., Hu, R., Zhang, X., Chen, M., Chen, N., Pan, L., Wang, T., Wang, M., Yang, Z., Wang, Q., and Yu, S., Cloning and functional analysis of three diacylglycerol acyltransferase genes from peanut (Arachis hypogaea L.), PLoS One, 2014, vol. 9, p. 1. https://doi.org/10.1371/journal.pone.0105834

    Article  CAS  Google Scholar 

  74. Villa, J.A., Cabezas, M., de la Cruz, F., and Moncalián, G., Use of limited proteolysis and mutagenesis to identify folding domains and sequence motifs critical for wax ester synthase/acyl coenzyme A:diacylglycerol acyltransferase activity, Appl. Environ. Microbiol., 2014, vol. 80, p. 1132. https://doi.org/10.1128/AEM.03433-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Tran, T.N.T., Shelton, J., Brown, S., and Durrett, T.P., Membrane topology and identification of key residues of EaDAcT, a plant MBOAT with unusual substrate specificity, Plant J., 2017, vol. 92, p. 82. https://doi.org/10.1111/tpj.13636

    Article  CAS  PubMed  Google Scholar 

  76. Turchetto-Zolet, C.A., Maraschin, F.S., De Morais, G.L., Cagliari, A., Andrade, C.M.B., Margis-Pinheiro, M., and Margis, R., Evolutionary view of acyl-CoA diacylglycerol acyltransferase (DGAT), a key enzyme in neutral lipid biosynthesis, BMC Evol. Biol., 2011, vol. 11, p. 263. https://doi.org/10.1186/1471-2148-11-263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Milcamps, A., Tumaney, A.W., Paddock, T., Pan, D.A., Ohlrogge, J., and Pollard, M., Isolation of a gene encoding a 1,2-diacylglycerol-sn-acetyl-CoA acetyltransferase from developing seeds of Euonymus alatus, J. Biol. Chem., 2005, vol. 280, p. 5370. https://doi.org/10.1074/jbc.M410276200

    Article  CAS  PubMed  Google Scholar 

  78. Zou, J., Wei, Y., Jako, C., Kumar, A., Selvaraj, G., and Taylor, D.C., The Arabidopsis thaliana TAG1 mutant has a mutation in a diacylglycerol acyltransferase gene, Plant J., 1999, vol. 19, p. 645. https://doi.org/10.1046/j.1365-313x.1999.00555.x

    Article  CAS  PubMed  Google Scholar 

  79. Du, X., Herrfurth, C., Gottlieb, T., Kawelke, S., Feussner, K., Rühling, H., Feussner, I., and Maniak, M., Dictyostelium discoideum Dgat2 can substitute for the essential function of Dgat1 in triglyceride production but not in ether lipid synthesis, Eukaryotic Cell, 2014, vol. 13, p. 517. https://doi.org/10.1128/EC.00327-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Bouvier-Navé, P., Benveniste, P., Oelkers, P., Sturley, S.L., and Schaller, H., Expression in yeast and tobacco of plant cDNAs encoding acyl CoA:diacylglycerol acyltransferase, Eur. J. Biochem., 2000, vol. 267, p. 85. https://doi.org/10.1046/j.1432-1327.2000.00961.x

    Article  PubMed  Google Scholar 

  81. Zhang, H., Damude, H.G., and Yadav, N.S., Three diacylglycerol acyltransferases contribute to oil biosynthesis and normal growth in Yarrowia lipolytica, Yeast, 2012, vol. 29, p. 25. https://doi.org/10.1002/yea.1914

    Article  CAS  PubMed  Google Scholar 

  82. Aymé, L., Jolivet, P., Nicaud, J.-M., and Chardot, T., Molecular characterization of the Elaeis guineensis medium-chain fatty acid diacylglycerol acyltransferase DGAT1-1 by heterologous expression in Yarrowia lipolytica, PLoS One, 2015, vol. 10, p. e0143113.https://doi.org/10.1371/journal.pone.0143113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Li, R., Yu, K., and Hildebrand, D.F., DGAT1, DGAT2 and PDAT expression in seeds and other tissues of epoxy and hydroxy fatty acid accumulating plants, Lipids, 2010, vol. 45, p. 145. https://doi.org/10.1007/s11745-010-3385-4

    Article  CAS  PubMed  Google Scholar 

  84. Chen, Y., Cui, Q., Xu, Y., Yang, S., Gao, M., and Wang, Y., Effects of tung oilseed FAD2 and DGAT2 genes on unsaturated fatty acid accumulation in Rhodotorula glutinis and Arabidopsis thaliana, Mol. Genet. Genomics, 2015, vol. 290, p. 1605. https://doi.org/10.1007/s00438-015-1011-0

    Article  CAS  PubMed  Google Scholar 

  85. Burgal, J., Shockey, J., Lu, C., Dyer, J., Larson, T., Graham, I., and Browse, J., Metabolic engineering of hydroxy fatty acid production in plants: RcDGAT2 drives dramatic increases in ricinoleate levels in seed oil, Plant Biotechnol. J., 2008, vol. 6, p. 819. https://doi.org/10.1111/j.1467-7652.2008.00361.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Du, M., Liu, X., Liu, X., Yin, X., Han, S., Song, Q., and An, S., Glycerol-3-phosphate O-acyltransferase is required for PBAN-induced sex pheromone biosynthesis in Bombyx mori, Sci. Rep., 2015, vol. 5, p. 8110. https://doi.org/10.1038/srep08110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Barbosa, A.D., Lim, K., Mari, M., Edgar, J.R., Gal, L., Sterk, P., Jenkins, B.J., Koulman, A., Savage, D.B., Schuldiner, M., Reggiori, F., Wigge, P.A., and Siniossoglou, S., Compartmentalized synthesis of triacylglycerol at the inner nuclear membrane regulates nuclear organization, Dev. Cell, 2019, vol. 50, p. 755. https://doi.org/10.1016/j.devcel.2019.07.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Misra, A., Khan, K., Niranjan, A., Nath, P., and Sane, V.A., Over-expression of JcDGAT1 from Jatropha curcas increases seed oil levels and alters oil quality in transgenic Arabidopsis thaliana, Phytochemistry, 2013, vol. 96, p. 37. https://doi.org/10.1016/J.PHYTOCHEM.2013.09.020

    Article  CAS  PubMed  Google Scholar 

  89. Sidorov, R.A., Zhukov, A.V., Pchelkin, V.P., Vereshchagin, A.G., and Tsydendambaev, V.D., Content and fatty acid composition of neutral acylglycerols in Euonymus fruits, J. Am. Oil Chem. Soc., 2014, vol. 91, p. 805. https://doi.org/10.1007/s11746-014-2425-2

    Article  CAS  Google Scholar 

  90. McKeon, T.A. and He, X., Castor diacylglycerol acyltransferase type 1 (DGAT1) displays greater activity with diricinolein than Arabidopsis DGAT1, Biocatal. Agric. Biotechnol., 2015, vol. 4, p. 276. https://doi.org/10.1016/j.bcab.2015.01.005

    Article  Google Scholar 

  91. Dey, P., Chakraborty, M., Kamdar, M.R., and Maiti, M.K., Functional characterization of two structurally novel diacylglycerol acyltransferase2 isozymes responsible for the enhanced production of stearate-rich storage lipid in Candida tropicalis SY005, PLoS One, 2014, vol. 9, p. e94472. https://doi.org/10.1371/journal.pone.0094472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Arisz, S.A., Heo, J.Y., Koevoets, I.T., Zhao, T., van Egmond, P., Meyer, A.J., Zeng, W., Niu, X., Wang, B., Mitchell-Olds, T., Schranz, M.E., and Testerink, C., Diacylglycerol acyltransferase1 contributes to freezing tolerance, Plant Physiol., 2018, vol. 177, p. 1410. https://doi.org/10.1104/pp.18.00503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Xu, Y., Chen, G., Greer, M.S., Caldo, K.M.P., Ramakrishnan, G., Shah, S., Wu, L., Lemieux, M.J., Ozga, J., and Weselake, R.J., Multiple mechanisms contribute to increased neutral lipid accumulation in yeast producing recombinant variants of plant diacylglycerol acyltransferase 1, J. Biol. Chem., 2017, vol. 292, p. 17819. https://doi.org/10.1074/jbc.M117.811489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Taylor, D.C. Zhang, Y., Kumar, A., Francis, T., Giblin, E.M., Barton, D.L., Ferrie, J.R., Laroche, A., Shah, S., Zhu, W., Snyder, C.L., Hall, L., Rakow, G., Harwood, J.L., and Weselake, R.J., Molecular modification of triacylglycerol accumulation by over-expression of DGAT1 to produce canola with increased seed oil content under field conditions, Botany, 2009, vol. 87, p. 533. https://doi.org/10.1139/B08-101

    Article  CAS  Google Scholar 

  95. Niu, Y.-F., Zhang, M.-H., Li, D.-W., Yang, W.-D., Liu, J.-S., Bai, W.-B., and Li, H.-Y., Improvement of neutral lipid and polyunsaturated fatty acid biosynthesis by overexpressing a type 2 diacylglycerol acyltransferase in marine diatom Phaeodactylum tricornutum, Mar. Drugs, 2013, vol. 11, p. 4558. https://doi.org/10.3390/md11114558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Sanjaya, Miller, R., Durrett, T.P., Kosma, D.K., Lydic, T.A., Muthan, B., Koo, A.J.K., Bukhman, Y.V., Reid, G.E., Howe, G.A., Ohlrogge, J., and Benning, C., Altered lipid composition and enhanced nutritional value of Arabidopsis leaves following introduction of an algal diacylglycerol acyltransferase 2, Plant Cell, 2013, vol. 25, p. 677. https://doi.org/10.1105/tpc.112.104752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The work was partially supported through State Task no. 0106-2019-0002 and the Russian Science Foundation (project no. 17-74-10127 “Peculiarities of functions of sn-1,2-diacyl-3-acyltransferases with different substrate specificity”).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. S. Pavlenko.

Ethics declarations

Conflict of interests. The authors declare that they have no conflicts of interest.

Statement on the welfare of humans or animals. This article does not contain any studies involving humans or animals performed by any of the authors.

Additional information

Translated by A. Aver’yanov

Abbreviations: a.a.—amino acid residue; ACAT—acyl-CoA : cholesterol acyltransferase; AcDAG—3-acetyl-1,2-diacyl-sn-glycerol; DAcT—sn-1,2-diacylglycerol-3-acetyltransferase; DAG—1,2-diacyl-sn-glycerol; DGAT—diacylglycerol acyltransferase; IDR—intrinsically disordered region; MBOAT—membrane-bound O-acyltransferase; PLAG—sn-1-palmitoyl-2-linoleoyl-3-acetyl-rac-glycerol; PUFA—polyunsaturated fatty acid; sTAG—structured TAG; TAG—triacylglycerol

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pavlenko, O.S., Akashkina, Y.V., Suhorukova, A.V. et al. Diversity of Types of Plant Diacylglycerol Acyltransferases, Peculiarities of Their Functioning, and How Many DGATs are Required for Plants. Russ J Plant Physiol 69, 2 (2022). https://doi.org/10.1134/S1021443722010162

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1134/S1021443722010162

Keywords:

Navigation