Skip to main content
Log in

Functional Condition of Photosystem II in Leaves of Spring Oats during Autumnal Decrease in Temperature

  • RESEARCH PAPERS
  • Published:
Russian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

Dynamics of chlorophyll a fluorescence changes (including JIP test parameters) and photosynthetic pigments were studied in oat (Avena sativa L.) leaves of late summer sowing during autumnal cooling. As the average daily temperature decreased from 8 to 2°С, the chlorophyll content decreased by 40%, while the chlorophyll a/b ratio ranged between 2.2 and 2.4. The total pool of carotenoids and the relative content of β‑carotene, lutein, neoxanthin, and pigments of the violaxanthin cycle changed insignificantly. The relative number of QB-nonreducing reaction centers (RC) of photosystem II (PSII) and the quantum yield of energy-dependent component qE of nonphotochemical quenching in the PSII antenna (φNPQ parameter) were found to increase during the seasonal cooling. The values of Fv/Fm parameter characterizing the maximal photochemical efficiency of PSII complexes were 0.72–0.76. At temperatures around 0°C, Fv/Fm decreased to 0.62. At the same time, the nonregulated (light-independent) thermal dissipation (photoinhibitory component qI of nonphotochemical quenching) was enhanced, which was manifested in the increase in parameters φDo and DI0/RC. It is concluded that, under seasonal cooling, the PSII reaction centers partly lose photochemical activity and start functioning as dissipative centers of excitation energy. In a significant part of inactivated RC, the loss of QA-reduction was reversible, which implies the formation of photoinactivated forms of PSII complexes stabilized at low temperatures. The decrease in daily average temperatures to −3°С with nighttime low temperatures from −7 to −8°С led to plant death within 3 days.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Hurry, V.M. and Huner, N.P.A., Low growth temperature affects a differential inhibition of photosynthesis in spring and winter wheat, Plant Physiol., 1991, vol. 96, p. 491. https://doi.org/10.1104/pp.96.2.491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Gray, G.R., Savitch, L.V., Ivanov, A.G., and Huner, N.P.A., Photosystem II excitation pressure and development of resistance to photoinhibition. II. Adjustment of photosynthetic capacity in winter wheat and winter rye, Plant Physiol., 1996, vol. 110, p. 61. https://doi.org/10.1104/pp.110.1.61

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Venzhik, Y.V., Titov, A.F., Talanova, V.V., Frolova, S.A., Talanov, A.V., and Nazarkina, E.A., Influence of lowered temperature on the resistance and functional activity of the photosynthetic apparatus of wheat plants, Biol. Bull. Russ. Acad. Sci., 2011, vol. 38, p. 132. https://doi.org/10.1134/S1062359011020142

    Article  CAS  Google Scholar 

  4. Venzhik, Y.V., Titov, A.F., Talanova, V.V., Miroslavov, E.A., and Koteeva, N.K., Structural and functional reorganization of the photosynthetic apparatus in adaptation to cold of wheat plants, Cell Tissue Biol., 2013, vol. 7, p. 168. https://doi.org/10.1134/S1990519X13020132

    Article  Google Scholar 

  5. Rizza, F., Pagani, D., Stanca, A.M., and Cattivelli, L., Use of chlorophyll fluorescence to evaluate the cold acclimation and freezing tolerance of winter and spring oats, Plant Breed., 2008, vol. 120, p. 389. https://doi.org/10.1046/j.1439-0523.2001.00635.x

    Article  Google Scholar 

  6. Drozdov, S.N., Kurets, V.K., and Titov, A.F., Termorezistentnost’ aktivno vegetiruyushchikh rastenii (Thermoresistance of Actively Growing Plants), Leningrad: Nauka, 1984.

  7. Petrova, L.V., Estimation of oat variety samples (Avena sativa L.) by the method of multi-dimensional ranking in Central Yakutia, Zemledelie, 2017, no. 5, p. 42.

  8. Petrov, K.A., Kriorezistentnost’ rastenii: ekologo-fiziologicheskie i biokhimicheskie aspekty (Cryoresistance of Plants: Ecological, Physiological, and Biochemical Aspects), Novosibirsk: Sib. Otd., Ross. Akad. Nauk, 2016.

  9. Strasser, R.J., Tsimilli-Michael, M., and Srivastava, A., Analysis of chlorophyll a fluorescence transient, in A-dvances in Photosynthesis and Respiration, Vol. 19: Chlorophyll a Fluorescence: A Signature of Photosynthesis, Papageorgiou, G. and Govindjee, Eds., Dordrecht: Springer, 2004, p. 321. https://doi.org/10.1007/978-1-4020-3218-9_12

  10. Schreiber, U., Pulse-amplitude-modulation (PAM) fluorometry and saturation pulse method: an overview, in Advances in Photosynthesis and Respiration, Vol. 19: Chlorophyll a Fluorescence: A Signature of Photosynthesis, Papageorgiou, G. and Govindjee, Eds., Dordrecht: Springer, 2004, p. 279.

  11. Goltsev, V.N., Kalaji, H.M., Paunov, M., Bąba, V., Horaczek, T., Mojski, J., Kociel, H., and Allakhverdiev, S.I., Variable chlorophyll fluorescence and its use for assessing physiological condition of plant photosynthetic apparatus, Russ. J. Plant Physiol., 2016, vol. 63, p. 869. https://doi.org/10.1134/S1021443716050058

    Article  CAS  Google Scholar 

  12. Klughammer, Chr. and Schreiber, U., Complementary PS II quantum yields calculated from simple fluorescence parameters measured by PAM fluorometry and the Saturation Pulse method, PAM Application Notes, 2008, vol. 1, p. 27.

  13. Lichtenthaler, H.K., Chlorophylls and carotenoids pigments of photosynthetic biomembranes, in Methods in Enzymology, Vol. 148, Colowick, S.P. and Kaplan, N.O., Eds., New York: Academic, 1987, p. 350. https://doi.org/10.1016/0076-6879(87)48036-1

  14. Gilmore, A.M. and Yamamoto, H.Y., Resolution of lutein and zeaxanthin using a non-endcapped, lightly carbon loaded C18 high performance liquid chromatographic column, J. Chromatogr., 1991, vol. 35, p. 67. https://doi.org/10.1016/S0021-9673(01)95762-0

    Article  Google Scholar 

  15. Mykhlyk, A.I. and Duktova, N.A., Estimation of photosynthetic activity of oats varieties depending on the level of nitrogen feeding, Vestn. Bel. S-kh. Akad., 2015, no. 3, p. 130.

  16. Yamane, Y., Kashino, Y., Koike, H., and Satoh, K., Increases in the fluorescence F0 level and reversible inhibition of photosystem II reaction center by high-temperature treatments in higher plants, Photosynth. Res., 1997, vol. 52, p. 57. https://doi.org/10.1023/A:1005884717655

    Article  CAS  Google Scholar 

  17. Liu, W., Yu, K., He, T., Li, F., Zhang, D., and Liu, J., The low temperature induced physiological responses of Avena nuda L., a cold-tolerant plant species, Sci. World J., 2013, vol. 2013: 658793. https://doi.org/10.1155/2013/658793

    Article  CAS  Google Scholar 

  18. Ensminger, I., Busch, F., and Huner, N.P.A., Photostasis and cold acclimation: sensing low temperature through photosynthesis, Physiol. Plant., 2006, vol. 126, p. 28. https://doi.org/10.1111/j.1399-3054.2006.00627.x

    Article  CAS  Google Scholar 

  19. Klimov, S.V., Adaptation of plants to low temperatures, Usp. Sovrem. Biol., 2001, vol. 121, p. 3.

    CAS  Google Scholar 

  20. Jahns, P. and Holzwarth, A.R., The role of the xanthophyll cycle and of lutein in photoprotection of photosystem II, Biochim. Biophys. Acta, 2012, vol. 1817, p. 182. https://doi.org/10.1016/j.bbabio.2011.04.012

    Article  CAS  PubMed  Google Scholar 

  21. Korneev, D.Yu., Informatsionnye vozmozhnosti metoda induktsii fluorestsentsii khlorofilla (Information Capabilities of Chlorophyll Fluorescence Induction Method), Kiev: Al’terpres, 2002.

  22. Verhoeven, A., Sustained energy dissipation in winter evergreens, New Phytol., 2014, vol. 201, p. 57. https://doi.org/10.1111/nph.12466

    Article  Google Scholar 

  23. Sofronova, V.E., Antal, T.K., Dymova, O.V., and Golovko, T.K., Seasonal changes in primary photosynthetic events during low temperature adaptation of Pinus sylvestris in Central Yakutia, Russ. J. Plant Physiol., 2018, vol. 65, p. 658. https://doi.org/10.1134/S1021443718050163

    Article  CAS  Google Scholar 

  24. Sane, P.V., Ivanov, A.G., Hurry, V., Huner, N.P.A., and Oquist, G., Changes in the redox potential of primary and secondary electron-accepting quinones in photosystem II confer increased resistance to photoinhibition in low-temperature-acclimated Arabidopsis, Plant Physiol., 2003, vol. 132, p. 2144. https://doi.org/10.1104/pp.103.022939

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Stirbet, A. and Govindjee, On the relation between the Kautsky effect (chlorophyll a fluorescence induction) and photosystem II: basics and applications of the OJIP fluorescence transient, J. Photochem. Photobiol. B, 2011, vol. 104, p. 236. https://doi.org/10.1016/j.jphotobiol.2010.12.010

  26. Force, L., Critchley, C., and van Rensen, J.J.S., New fluorescence parameters for monitoring photosynthesis in plants, Photosynth. Res., 2003, vol. 78, p. 17. https://doi.org/10.1023/A:1026012116709

    Article  CAS  PubMed  Google Scholar 

  27. Mathur, S., Mehta, P., Jajoo, A., and Bharti, S., Analysis of elevated temperature induced inhibition of photosystem II using Chl a fluorescence induction kinetics in wheat leaves (Triticum aestivum), Plant Biol., 2011, vol. 13, p. 1. https://doi.org/10.1111/j.1438-8677.2009.00319.x

    Article  CAS  PubMed  Google Scholar 

  28. Tang, Y., Wen, X., and Lu, C., Differential changes in degradation of chlorophyll–protein complexes of photosystem I and photosystem II during flag leaf senescence of rice, Plant Physiol. Biochem., 2005, vol. 43, p. 193. https://doi.org/10.1016/j.plaphy.2004.12.009

    Article  CAS  PubMed  Google Scholar 

  29. Van Heerden, P.D.R., Swanepoel, J.W., and Kruger, G.H.J., Modulation of photosynthesis by drought in two desert scrub species exhibiting C3-mode CO2 assimilation, Environ. Exp. Bot., 2007, vol. 61, p. 124. https://doi.org/10.1016/j.envexpbot.2007.05.005

    Article  CAS  Google Scholar 

  30. Mohanty, P., Allakhverdiev, S.I., and Murata, N., Application of low temperatures during photoinhibition allows characterization of individual steps in photodamage and the repair of photosystem II, Photosynth. Res., 2007, vol. 94, p. 217. https://doi.org/10.1007/s11120-007-9184-y

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The study was supported by the federal budget allocated for the state programs of the Institute for Biological Problems of the Cryolithozone, Yakutsk Research Center, Siberian Branch, Russian Academy of Sciences (no. АААА-А17-117020110054-6) and the Institute of Biology, Komi Research Center, Ural Branch, Russian Academy of Sciences (no. АААА-А17-117033010038-7).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. E. Sofronova.

Ethics declarations

This article does not contain any studies with human participants or animals performed by any of the authors. The authors declare that they have no conflicts of interest.

Additional information

Translated by A. Bulychev

Abbreviations: Chl―chlorophyll; ETC―electron transport chain; ETR―electron transport rate; LHC―light-harvesting complex; NPQ―nonphotochemical quenching of chlorophyll fluorescence; OJIP―induction curves of chlorophyll fluorescence; PAM―pulse-amplitude-modulation; PAR―photosynthetically active radiation; PPFD―photosynthetic photon flux density; PQ―plastoquinone pool; PSI and PSII―photosystems I and II; PSA―photosynthetic apparatus; ROS—reactive oxygen species; φNPQ―quantum yield of energy-dependent component qE of NPQ that is sensitive to pH-dependent regulation of the violaxanthin cycle.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sofronova, V.E., Chepalov, V.A., Dymova, O.V. et al. Functional Condition of Photosystem II in Leaves of Spring Oats during Autumnal Decrease in Temperature. Russ J Plant Physiol 67, 661–670 (2020). https://doi.org/10.1134/S1021443720030206

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1021443720030206

Keywords:

Navigation