Skip to main content
Log in

Characteristics of Chlorophyll Fluorescence and Antioxidant-Oxidant Balance in PEPC and PPDK Transgenic Rice under Aluminum Stress

  • Research Papers
  • Published:
Russian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

Aluminum is one of the most important heavy metals inducing stress during plant growth and development. In this study, transgenic rice (Oryza sativa L., cv. Kitaake) plants expressing the maize C4PEPC and PPDK genes were evaluated for aluminum tolerance. A 4.3 and 19.1 folds increase of PPDK and PEPC activities in transgenic rice produced increases in root exudation of oxalate, malate, and citrate (1.20, 1.41, and 1.65 times, respectively) compared to untransformed (WT) plants. Transgenic rice had enhanced aluminum tolerance compared to WT based on chlorophyll fluorescence and chlorophyll levels. Transgenic plants under aluminum stress also had decreased lipid membrane oxidative damage and higher levels of ROS-scavenging enzyme activity. The PEPC and PPDK genes play an important role in aluminum stress tolerance by increasing the effluxes of organic acids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

CAT:

catalase

CK:

PEPC and PPDK transgenic rice

MDA:

malondialdehyde

NPQ:

non-photochemical quenching

PEPC:

phosphoenolpyruvate carboxylase

POD:

peroxidase

PPDK:

pyruvate orthophosphate dikinase

PSII:

photosystem II

ΦPSII:

the actual PSII quantum efficiency

ROS:

reactive oxygen species

SOD:

superoxide dismutase

WT:

wild type

References

  1. Dipierro, N., Mondelli, D., Paciolla, C., Brunetti, G., and Dipierro, S., Changes in the ascorbate system in the response of pumpkin root to aluminum stress, Plant Physiol., 2005, vol. 162, pp. 529–536.

    Article  CAS  Google Scholar 

  2. Arroyo-Serralta, G.A., Kú-González, A., Hernández-Sotomayor, S.M.T., and Aguilar, J.J.Z., Exposure to toxic concentrations of aluminum activates a MAPKlike protein in cell suspension cultures of Coffea arabica, Plant Physiol. Biochem., 2005, vol. 43, pp. 27–35.

    Article  CAS  PubMed  Google Scholar 

  3. Simonovicova, M., Tamas, L., Huttova, J., and Mistrík, I., Effect of aluminium on oxidative stress related enzymes activities in barley roots, Biol. Plant., 2004, vol. 48, pp. 261–266.

    Article  CAS  Google Scholar 

  4. Andersson, B. and Aro, E.M., Photodamage and D1 protein turnover in photosystem II, in Regulation of Photosynthesis, Aro, E.M. and Andersson, B., Eds., Dordrecht: Kluwer, 2001, pp. 377–393.

    Google Scholar 

  5. Chen, L., Qi, Y., and Liu, X., Effects of aluminum on light energy utilization and photoprotective systems in citrus leaves, Ann. Bot., 2005, vol. 96, pp. 35–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ma, B., Gao, L., Zhang, H., Cui, J., and Shen, Z., Aluminum-induced oxidative stress and changes in antioxidant defenses in the roots of rice varieties differing in Al tolerance, Plant Cell Rep., 2012, vol. 31, pp. 687–696.

    Article  CAS  PubMed  Google Scholar 

  7. Bhoomika, K., Pyngrope, S., and Dubey, R., Differential responses of antioxidant enzymes to aluminum toxicity in two rice (Oryza sativa L.) cultivars with marked presence and elevated activity of Fe SOD and enhanced activities of Mn SOD and catalase in aluminum tolerant cultivar, Plant Growth Regul., 2013, vol. 71, pp. 235–252.

    Article  CAS  Google Scholar 

  8. Ma, J., Che, Z., and Shen, R., Molecular mechanisms of Al tolerance in gramineous plants, Plant Soil, 2014, vol. 381, pp. 1–12.

    Article  CAS  Google Scholar 

  9. Zhou, G., Delhaize, E., Zhou, M., and Ryan, P.R., The barley MATE gene, HvAACT1, increases citrate efflux and Al3+ tolerance when expressed in wheat and barley, Ann. Bot., 2013, vol. 112, pp. 603–612.

    CAS  Google Scholar 

  10. Zhu, X., Sun, Y., Zhang, B., Mansoori, N., Wan, J., Liu, Y., Wang, Z., Shi, Y., Zhou, Y., and Zheng, S., TRICHOME BIREFRINGENCE-LIKE27 affects aluminum sensitivity by modulating the O-acetylation of xyloglucan and aluminum-binding capacity in Arabidopsis, Plant Physiol., 2014, vol. 166., pp. 181–189.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Chastain, C.J. and Chollet, R., Regulation of pyruvate, orthophosphate dikinase by ADP-/Pi-dependent reversible phosphorylation in C3 and C4 plants, Plant Physiol. Biochem., 2003, vol. 4, pp. 523–532.

    Article  Google Scholar 

  12. Begum, H.H., Osaki, M., Watanabe, T., and Shinano, T., Mechanisms of aluminum tolerance in phosphoenolpyruvate carboxylase transgenic rice, Plant Nutr., 2009, vol. 32, pp. 84–96.

    Article  CAS  Google Scholar 

  13. Trejo-Téllez, L.I., Stenzel, R., Gómez-Merino, F.C., and Schmitt, J.M., Transgenic tobacco plants overexpressing pyruvate phosphate dikinase increase exudation of organic acids and decrease accumulation of aluminum in the roots, Plant Soil, 2010, vol. 326, pp. 187–198.

    Article  Google Scholar 

  14. Zhang, B., Ling, L., Wang, R., and Jiao, D., Photosynthetic characteristics and effect of ATP in transgenic rice with phosphoenolpyruvate carboxylase and pyruvate orthophosphate dikinase genes, Photosynthetica, 2009, vol. 4, pp. 133–136.

    Article  Google Scholar 

  15. Martienssen, R.A., Barkan, A., Freeling, M., and Taylor, W.C., Molecular cloning of a maize gene involved in photosynthetic membrane organization that is regulated by Robertson’s Mutator, EMBO J., 1989, vol. 8, pp. 1633–1639.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Jiao, D., Li, X., and Ji, B., Photoprotective effects of high level expression of C4 phosphoenolpyruvate carboxylase in transgenic rice during photoinhibition, Photosynthetica, 2005, vol.43, pp. 501–508.

    Google Scholar 

  17. Zhang, Y., Chen, L., He, J., Qian, L., Wu, L., and Wang, R., Characteristics of chlorophyll fluorescence and antioxidative system in super-hybrid rice and its parental cultivars under chilling stress, Biol. Plant., 2010, vol. 54, pp. 164–168.

    Article  CAS  Google Scholar 

  18. Ruan, L., Chen, L., Chen, Y., He, J., Zhang, W., Gao, Z., and Zhang, Y., Expression of Arabidopsis HDG11 enhances tolerance to drought stress in transgenic sweet potato plants, J. Plant Biol., 2012, vol. 55, pp. 151–158.

    Article  CAS  Google Scholar 

  19. Doubnerová, V. and Ryšlavá, H., What can enzymes of C4 photosynthesis do for C3 plants under stress? Plant Sci., 2011, vol. 180, pp. 575–583.

    Article  PubMed  Google Scholar 

  20. Crecelius, F., Streb, P., and Feierabend, J., Malate metabolism and reactions of oxidoreduction in coldhardened winter rye (Secale cereale L.) leaves, J. Exp. Bot., 2003, vol. 54, pp. 1075–1083.

    Article  CAS  PubMed  Google Scholar 

  21. Moons, A., Valcke, R., and van Montagu, M., Lowoxygen stress and water deficit induce cytosolic pyruvate orthophosphate dikinase (PPDK) expression in roots of rice, a C3 plant, Planta, 1995, vol. 15, pp. 89–98.

    Google Scholar 

  22. Fißlthaler, B., Meyer, G., Bohnert, H., and Schmitt, J., Age-dependent induction of pyruvate, orthophosphate dikinase in Mesembryanthemum crystallinum L., Planta, 1995, vol. 196, pp. 492–500.

    Article  PubMed  Google Scholar 

  23. Kreslavski, V.D., Zorina, A.A., Los, D.A., Fomina, I.R., and Allakhverdiev, S.I., Molecular mechanisms of stress resistance of photosynthetic machinery, in Molecular Stress Physiology of Plants, Rout, G.R. and Das, A.B., Eds., New Delhi, India: Springer, 2013, pp. 21–51.

    Chapter  Google Scholar 

  24. Peixoto, H.P., da Matta, F.M., and da Matta, J.C., Responses of the photosynthetic apparatus to aluminum stress in two sorghum cultivars, J. Plant Nutr., 2002, vol. 25, pp. 821–832.

    Article  CAS  Google Scholar 

  25. Jiang, H., Chen, L., Zheng, J., Han, S., Tang, N., and Smith, B.R., Aluminum-induced effects on photosystem II photochemistry in citrus leaves assessed by the chlorophyll a fluorescence transient, Tree Physiol., 2008, vol. 28, pp. 1863–1871.

    Article  CAS  PubMed  Google Scholar 

  26. Martins, N., Osório, M.L., Gonçalves, S., Osório, J., Palma, T., and Romano, A., Physiological responses of Plantago algarbiensis and P. almogravensis shoots and plantlets to low pH and aluminum stress, Acta Physiol. Plant., 2013, vol. 35, pp. 615–625.

    Article  CAS  Google Scholar 

  27. Kornyeyev, D., Logan, B.A., and Holaday, A.S., Excitation pressure as a measure of the sensitivity of photosystem II to photoinactivation, Funct. Plant Biol., 2010, vol. 37, pp. 943–951.

    Article  CAS  Google Scholar 

  28. Sofronova, V.E., Chepalov, V.A., Petrov, K.A., Dymova, O.V., and Golovko, T.K., Adaptive changes in pigment complex of Pinus sylvestris needles upon cold acclimation, Russ. J. Plant Physiol., 2016, vol. 63, pp. 433–442.

    Article  CAS  Google Scholar 

  29. Pal, S., Datta, S.C., and Reza, S.K., Interrelationship of organic acids and aluminum concentrations in rhizosphere and nonrhizosphere soil solution of rice in acidic soil, Commun. Soil Sci. Plant Anal., 2011, vol. 42, pp. 932–944.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. H. Zhang.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y.H., Wang, E.M., Zhao, T.F. et al. Characteristics of Chlorophyll Fluorescence and Antioxidant-Oxidant Balance in PEPC and PPDK Transgenic Rice under Aluminum Stress. Russ J Plant Physiol 65, 49–56 (2018). https://doi.org/10.1134/S1021443718010211

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1021443718010211

Keywords

Navigation