Skip to main content
Log in

Role of green light in physiological activity of plants

  • Reviews
  • Published:
Russian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

Green light, along with other portions of the visible region of electromagnetic radiation, brings plants environmental information. Green light is a factor regulating the morphology of cells, tissues, and organs; photosynthesis; respiration and growth; and duration of stages of plant ontogenesis. This review summarizes the impact of the green light on the life of plants, and green light receptors and the mechanisms of its action are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

BR:

brassinosteroids

BL:

blue light

Chl:

chlorohhyll

FL:

far-red light

GL:

green light

P:

phytochrome

RL:

red light

WL:

white light

YL:

yellow light

ZR:

zeatin riboside

References

  1. Tarakanov, I.G. and Wang, J., Light trophic and signal roles in the control of morphogenesis of the Brassica plants developing storage roots, Russ. J. Plant Physiol., 2009, vol. 56, pp. 232–241.

    Article  CAS  Google Scholar 

  2. Bouly, J.-P., Schleicher, E., Dionisio-Sese, M., Vandenbussche, F., Straeten, D.V.D., Bakrim, N., Meier, S., Batschauer, A., Galland, P., Bittl, R., and Ahmad, M., Cryptochrome blue light photoreceptors are activated through interconversion of flavin redox states, J. Biol. Chem., 2007, vol. 282, pp. 9383–9391.

    Article  CAS  PubMed  Google Scholar 

  3. Casal, J.J., Shade avoidance, in The Arabidopsis Book, 2012, no. 10: e0157.

    Article  PubMed Central  PubMed  Google Scholar 

  4. Karnachuk, R.A., Regulation of leaf growth and photosynthesis by green light, Sov. Plant Physiol., 1987, vol. 34, pp. 765–773.

    CAS  Google Scholar 

  5. Terashima, I., Fujita, T., Inoue, T., Chow, W.S., and Oguchi, R., Green light drives leaf photosynthesis more efficiently than red light in strong white light: revisiting the enigmatic question of why leaves are green, Plant Cell Physiol., 2009, vol. 50, pp. 684–697.

    Article  CAS  PubMed  Google Scholar 

  6. Solovchenko, A.E. and Merzlyak, M.N., Screening of visible and UV radiation as a photoprotective mechanism in plants, Russ. J. Plant Physiol., 2008, vol. 55, pp. 719–737.

    Article  CAS  Google Scholar 

  7. Tikhomirov, A.A., Lisovskii, G.M., and Sid’ko, F.Ya., Spektral’nyi sostav sveta i produktivnost’ rastenii (Spectral Composition of Light and Plant Productivity), Novosibirsk: Nauka, 1991.

    Google Scholar 

  8. Leivar, P. and Monte, E., PIFs: systems integrators in plant development, Plant Cell, 2014, vol. 26, pp. 56–78.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Goggin, D.E., Steadman, K.J., and Powles, S.B., Green and blue light photoreceptors are involved in maintenance of dormancy in imbibed annual ryegrass (Lolium rigidum) seeds, New Phytol., 2008, vol. 180, pp. 81–89.

    Article  PubMed  Google Scholar 

  10. Goggin, D.E. and Steadman, K.J., Blue and green are frequently seen: responses of seeds to shortand mid-wavelength light, Seed Sci. Res., 2012, vol. 22, pp. 27–35.

    Article  Google Scholar 

  11. Luna, B., Perez, B., Fernandez-Gonzalez, F., and Moreno, J.M., Sensitivity to green safelight of 12 mediterranean species, Seed Sci. Technol., 2004, vol. 32, pp. 113–117.

    Article  Google Scholar 

  12. Binder, B.J. and Anderson, D.M., Green light-mediated photomorphogenesis in a dinoflagellate resting cyst, Nature, 1986, vol. 322, pp. 659–661.

    Article  Google Scholar 

  13. Klein, R.M., Reversible effects of green and orangered radiation on plant cell elongation, Plant Physiol., 1979, vol. 63, pp. 114–116.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Karnachuk, R.A. and Golovatskaya, I.F., Effect of light spectral composition on the hormonal balance, growth, and photosynthesis in plant seedlings, Russ. J. Plant Physiol., 1998, vol. 45, pp. 805–813.

    CAS  Google Scholar 

  15. Kudo, R., Ishida, Y., and Yamamoto, K., Effect of green light irradiation on induction of disease resistance in plants, Acta Hortic., 2011, vol. 907, pp. 251–254.

    Article  Google Scholar 

  16. Muneer, S., Kim, E.J., Park, J.S., and Lee, J.H., Influence of green, red and blue light emitting diodes on multiprotein complex proteins and photosynthetic activity under different light intensities in lettuce leaves (Lactuca sativa L.), Int. J. Mol. Sci., 2014, vol. 15, pp. 4657–4670.

    Article  PubMed Central  PubMed  Google Scholar 

  17. Pardo, G.P., Aguilar, C.H., Martinez, F.R., and Canseco, M.M., Effects of light emitting diode high intensity on growth of lettuce (Lactuca sativa L.) and broccoli (Brassica oleracea L.) seedlings, Annu. Res. Rev. Biol., 2014, vol. 19, pp. 2983–2994.

    Article  Google Scholar 

  18. Kim, H.H., Green-light supplementation for enhanced lettuce growth under redand blue-lightemitting diodes, HortScience, 2004, vol. 39, pp. 1617–1622.

    PubMed  Google Scholar 

  19. Nahar, S.J., Shimasaki, K., and Haque, S.M., Effect of different light and two polysaccharides on the proliferation of protocorm-like bodies of Cymbidium cultured in vitro, Acta Hortic., 2012, vol. 956, pp. 307–313.

    Article  Google Scholar 

  20. Okada, K. and Shimura, Y., Modulation of root growth by physical stimuli, in Arabidopsis, Meyerowitz, E.M. and Somerville, C.R., Eds., New York: Cold Spring Harbor Lab. Press, 1994, pp. 655–683.

    Google Scholar 

  21. Liscum, E. and Briggs, W.R., Mutations in the NPH1 locus of Arabidopsis disrupt the perception of phototropic stimuli, Plant Cell, 1995, vol. 7, pp. 473–485.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. McCoshum, S. and Kiss, J.Z., Green light affects blue-light-based phototropism in hypocotyls of Arabidopsis thaliana, J. Torrey Bot. Soc., 2011, vol. 138, pp. 409–417.

    Article  Google Scholar 

  23. Furukawa, T., Watanabe, M., and Shihira-Ishikawa, I., Greenand blue-light-mediated chloroplast migration in the centric diatom Pleurosira laevis, Protoplasma, 1998, vol. 203, pp. 214–220.

    Article  Google Scholar 

  24. Figueroa, F.L., Niell, F.X., Figueiras, F.G., and Villarino, M.L., Diel migration of phytoplankton and spectral light field in the Ria de Vigo (NW Spain), Planta, 1998, vol. 130, pp. 491–499.

    Google Scholar 

  25. Konstantinova, T.N., Aksenova, N.P., and Nikitina, A.A., Effect of light spectral composition on development of coneflower and beef-steak plant under longand short-day conditions, Sov. Plant Physiol., 1968, vol. 15, pp. 363–366.

    Google Scholar 

  26. Negretskii, V.A., Lozhnikova, V.N., and Kanevskii, V.A., Effect of green light of different spectral length on flowering of the short-day plant red goosefoot (Chenopodium rubrum L.), dokl. Bot. Sci., Akad. Nauk SSSR, 1991, vol. 313/315, pp. 73–74.

    Google Scholar 

  27. Shakhov, A.A., Fotoenergetika rastenii i urozhai (Photoenergetics of Plants and Harvest), Moscow: Nauka, 1993.

    Google Scholar 

  28. Vrublevskaya, K.G., Zaitseva, T.A., and Mandel’, T.E., Photochemical activity of wheat chloroplasts during the greening under light with different spectral composition, Sov. Plant Physiol., 1978, vol. 25, pp. 1109–1114.

    CAS  Google Scholar 

  29. Golovatskaya, I.F. and Karnachuk, R.A., Effect of jasmonic acid on morphogenesis and photosynthetic pigment level in Arabidopsis seedlings grown under green light, Russ. J. Plant Physiol., 2008, vol. 55, pp. 220–224.

    Article  CAS  Google Scholar 

  30. Efimova, M.V., Karnachuk, R.A., Kuznetsov, V.V., and Kuznetsov, Vl.V., Green light regulates plastid gene transcription and stimulates the accumulation of photosynthetic pigments in plants, dokl. Biol. Sci., 2013, vol. 451, pp. 253–256.

    Article  CAS  PubMed  Google Scholar 

  31. Golovatskaya, I.F., Brassinosteroids and light–regulatory factors of growth and development of plants, in Brassinosteroids: A Class of Plant Hormone, Hayat S. and Ahmad A., Eds., New York: Springer-Verlag, 2011, pp. 119–143.

    Chapter  Google Scholar 

  32. Tokhver, A.K., Phytochrome, its main forms and their properties, in Fotoregulyatsiya metabolizma i morfogeneza rastenii (Photoregulation of Metabolism and Morphogenesis in Plants), Kursanov, A.L. and Voskresenskaya, N.P., Eds., Moscow: Nauka, 1975, pp. 56–65.

    Google Scholar 

  33. Zhang, T. and Folta, K.M., Green light signaling and adaptive response, Plant Signal. Behav., 2012, vol. 7, pp. 1–4.

    Article  CAS  Google Scholar 

  34. Karnachuk, R.A., Postovalova, V.M., Belen’kaya, E.V., and Zhulanova, S.G., Phytochrome controls 14C-carbohydrate metabolism in plants, Sov. Plant Physiol., 1978, vol. 25, pp. 268–271.

    CAS  Google Scholar 

  35. Terashima, I., Hanba, Y.T., Tholen, D., and Niinemets, U., Leaf functional anatomy in relation to photosynthesis, Plant Physiol., 2011, vol. 155, pp. 108–116.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Johkan, M., Shoji, K., and Goto, F., Effect of green light wavelength and intensity on photomorphogenesis and photosynthesis in Lactuca sativa, Environ. Exp. Bot., 2012, vol. 75, pp. 128–133.

    Article  CAS  Google Scholar 

  37. Golovatskaya, I.F., The role of cryptochrome 1 and phytochromes in the control of plant photomorphogenetic responses to green light, Russ. J. Plant Physiol., 2005, vol. 52, pp. 724–730.

    Article  CAS  Google Scholar 

  38. Samuoliené, G., Sirtautas, R., Brazaityté, A., and Duchovskis, P., Led lighting and seasonality effects antioxidant properties of baby leaf lettuce, Food Chem., 2012, vol. 134, pp. 1494–1499.

    Article  PubMed  Google Scholar 

  39. Liao, H.L. and Burns, J.K., Light controls phospholipase A2a and b gene expression in Citrus sinensis, J. Exp. Bot., 2010, vol. 61, pp. 2469–2478.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Liscum, E., Hodgson, D.W., and Campbell, T.J., Blue light signaling through the cryptochromes and phototropins. So that’s what the blues is all about, Plant Physiol., 2003, vol. 133, pp. 1429–1436.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Kagawa, T., Sakai, T., Suetsugu, N., Oikawa, K., Ishiguro, S., Kato, T., Tabata, S., Okada, K., and Wada, M., Arabidopsis NPL1: a phototropin homolog controlling the chloroplast high-light avoidance response, Science, 2001, vol. 291, pp. 21 384–21 391.

    Article  Google Scholar 

  42. Moglich, A. and Moffat, K., Engineered photoreceptors as novel optogenetic tools, Photochem. Photobiol. Sci., 2010, vol. 9, pp. 1286–1300.

    Article  PubMed  Google Scholar 

  43. Ito, S., Song, Y.H., and Imaizumi, T., LOV domaincontaining F-box proteins: light-dependent protein degradation modules in Arabidopsis, Mol. Plant, 2012, vol. 5, pp. 573–582.

    Article  PubMed  Google Scholar 

  44. Galvão, R.M., Li, M., Kothadia, S.M., Haskel, J.D., Decker, P.V., van Buskirk, E.K., and Chen, M., Photoactivated phytochromes interact with HEMERA and promote its accumulation to establish photomorphogenesis in Arabidopsis, Gen. Dev., 2012, vol. 26, pp. 1851–1863.

    Article  Google Scholar 

  45. Wu, D., Hu, Q., Yan, Z., Chen, W., Yan, C., Huang, X., Zhang, J., Yang, P., Deng, H., Wang, J., Deng, X.W., and Shi, Y., Structural basis of ultraviolet-B perception by UVR8, Nature, 2012, vol. 484, pp. 214–219.

    Article  PubMed  Google Scholar 

  46. Sineshchekov, O.A., Jung, K.H., and Spudich, J.L., Two rhodopsins mediate phototaxis to lowand highintensity light in Chlamydomonas reinhardtii, Proc. Natl. Acad. Sci. USA, 2002, vol. 99, pp. 8689–8694.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Ebnet, E., Fischer, M., Deininger, W., and Hegemann, P., Volvoxrhodopsin, a light-regulated sensory photoreceptor of the spheroidal green alga Volvox carteri, Plant Cell, 1999, vol. 11, pp. 1473–1484.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Grossman, A.R., Bhaya, D., and He, Q., Tracking the light environment by cyanobacteria and the dynamic nature of light harvesting, J. Biol. Chem., 2001, vol. 276, pp. 1 449–1 452.

    Google Scholar 

  49. Shapiro, T.E. and Zaitseva, T.A., Phytochrome regulation of the photosynthetic apparatus formation in wheat seedlings depending on the dose of preliminary illumination, Sov. Plant Physiol., 1991, vol. 38, pp. 40–44.

    CAS  Google Scholar 

  50. Vicente, C. and Garcia, I., Decrease in phytochrome pelletability induced by green + far-red light in Trifolium repens, Biochem. Biophys. Res. Commun., 1981, vol. 100, pp. 17–22.

    Article  CAS  PubMed  Google Scholar 

  51. Tanada, T., Interaction of green or red light with blue light on the dark closure Albizzia pinnules, Physiol. Plant., 1984, vol. 61, pp. 35–37.

    Article  Google Scholar 

  52. Sellaro, R., Crepy, M., Trupkin, S.A., Karayekov, E., Buchovsky, A.S., Rossi, C., and Casal, J.J., Cryptochrome as a sensor of the blue/green ratio of natural radiation in Arabidopsis, Plant Physiol., 2010, vol. 154, pp. 401–409.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  53. Liu, Z., Zhang, M., Guo, X., Tan, C., Li, J., Wang, L., Sancar, A., and Zhong, D., Dynamic determination of the functional state in photolyase and the implication for cryptochrome, Proc. Natl. Acad. Sci. USA, 2013, vol. 110, pp. 12 972–12 977.

    Article  CAS  Google Scholar 

  54. Hoang, H.H., Sechet, J., Bailly, C., Leymarie, J., and Corbineau, F., Inhibition of germination of dormant barley (Hordeum vulgare L.) grains by blue light as related to oxygen and hormonal regulation, Plant Cell Environ., 2014, vol. 37, pp. 1393–1403.

    Article  CAS  PubMed  Google Scholar 

  55. Talbott, L.D., Shmayevich, I.J., Chung, Y., Hammad, J.W., and Zeiger, E., Blue light and phytochrome-mediated stomatal opening in the npq1 and phot1 phot2 mutants of Arabidopsis, Plant Physiol., 2003, vol. 133, pp. 1522–1529.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  56. Talbott, L.D., Hammad, J.W., Harn, L.C., Nguyen, V.H., Patel, J., and Zeiger, E., Reversal by green light of blue light-stimulated stomatal opening in intact, attached leaves of Arabidopsis operates only in the potassium-dependent, morning phase of movement, Plant Cell Physiol., 2006, vol. 47, pp. 332–339.

    Article  CAS  PubMed  Google Scholar 

  57. Lin, C., Ahmad, M., Gordon, D., and Cashmore, A.R., Expression of an Arabidopsis cryptochrome gene in transgenic tobacco results in hypersensitivity to blue, UV-A, and green light (photoreceptor), Proc. Natl. Acad. Sci. USA, 1995, vol. 92, pp. 8423–8427.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  58. Frechilla, S., Talbott, L.D., Bogomolni, R.A., and Zeiger, E., Reversal of blue light-stimulated stomatal opening by green light, Plant Cell Physiol., 2000, vol. 41, pp. 171–176.

    Article  CAS  PubMed  Google Scholar 

  59. Poppe, C., Sweere, U., Drumm-Herrel, H., and Schafer, E., The blue light receptor cryptochrome 1 can act independently of phytochrome A and B in Arabidopsis thaliana, Plant J., 1998, vol. 16, pp. 465–471.

    Article  CAS  PubMed  Google Scholar 

  60. Folta, K.M., Green light stimulates early stem elongation, antagonizing light-mediated growth inhibition, Plant Physiol., 2004, vol. 135, pp. 1407–1416.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  61. Folta, K.M. and Maruhnich, S.A., Green light: a signal to slow down or stop, J. Exp. Bot., 2007, vol. 58, pp. 3099–3111.

    Article  CAS  PubMed  Google Scholar 

  62. Marian, C.M., Nakagawa, S., Rai-Constapel, V., Karasulu, B., and Thiel, W., Photophysics of flavin derivatives absorbing in the blue-green region: thioflavins as potential cofactors of photoswitches, J. Phys. Chem., 2014, vol. 118, pp. 1743–1753.

    Article  CAS  Google Scholar 

  63. Goodwin, T.W. and Mercer, E.I., Introduction to Plant Biochemistry, Oxford: Pergamon, 1983, vol. 1.

  64. Photosynthesis, Govindjee, Ed., New York: Academic, 1982, vol. 1–2.

  65. Krasnovskii, A.A., Preobrazovanie energii sveta pri fotosinteze. Molekulyarnye mekhanizmy. 29-e Bakhovskoe chtenie (The 29th Bach Lectures “The Conversion of Light Energy in Photosynthesis”), Moscow: Nauka, 1974.

    Google Scholar 

  66. Gitelson, A.A., Chivkunova, O.B., and Merzlyak, M.N., Nondestructive estimation of anthocyanins and chlorophylls in anthocyanic leaves, Am. J. Bot., 2009, vol. 96, pp. 1861–1868.

    Article  CAS  PubMed  Google Scholar 

  67. Merzlyak, M.N., Chivkunova, O.B., Solovchenko, A.E., and Naqvi, K.R., Light absorption by anthocyanins in juvenile, stressed, and senescing leaves, J. Exp. Bot., 2008, vol. 59, pp. 3903–3911.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  68. Solovchenko, A. and Chivkunova, O., Physiological role of anthocyanin accumulation in common hazel juvenile leaves, Russ. J. Plant Physiol., 2011, vol. 58, pp. 674–680.

    Article  CAS  Google Scholar 

  69. Ptushenko, V.V., Gins, M.S., Gins, V.K., and Tikhonov, A.N., Interaction of amaranthin with the electron transport chain of chloroplasts, Russ. J. Plant Physiol., 2002, vol. 49, pp. 585–591.

    Article  CAS  Google Scholar 

  70. Wang, Y. and Folta, K.M., Contributions of green light to plant growth and development, Am. J. Bot., 2013, vol. 100, pp. 70–78.

    Article  CAS  PubMed  Google Scholar 

  71. Pfeiffer, A., Kunkel, T., Hiltbrunner, A., Neuhaus, G., Wolf, I., Speth, V., Adam, E., Nagy, F., and Schäfer, E., A cell-free system for light-dependent nuclear import of phytochrome, Plant J., 2009, vol. 57, pp. 680–689.

    Article  CAS  PubMed  Google Scholar 

  72. Klose, C., Viczian, A., Kircher, S., Schäfer, E., and Nagy, F., Molecular mechanisms for mediating lightdependent nucleo/cytoplasmic partitioning of phytochrome photoreceptors, New Phytol., 2015, vol. 206, pp. 965–971.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  73. Kang, X. and Ni, M., Arabidopsis SHORT HYPOCOTYL UNDER BLUE1 contains SPX and EXS domains and acts in cryptochrome signaling, Plant Cell, 2006, vol. 18, pp. 921–934.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  74. Kreslavski, V.D. and Allakhverdiev, S.I., Transduction mechanisms of photoreceptor signaling in plant cell, Russ. J. Biol. Membr., 2006, vol. 23, pp. 275–295.

    CAS  Google Scholar 

  75. Demkiv, O.T., Kardash, A.R., and Khorkavtsiv, Ya.D., Cell polarity, its formation and reorientation, in Rost i ustoichivost’ rastenii (Plant Growth and Resistance), Salyaev, R.K. and Kefeli, V.I., Eds., Novosibirsk: Nauka, 1988.

  76. Chen, D., Xu, G., Tang, W., Jing, Y., Ji, Q., Fei, Z., and Lina, R., Antagonistic basic helix-loophelix/bZIP transcription factors form transcriptional modules that integrate light and reactive oxygen species signaling in Arabidopsis, Plant Cell, 2013, vol. 25, pp. 1657–1673.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  77. Zhou, P., Song, M., Yang, Q., Su, L., Hou, P., Guo, L., Zheng, X., Xi, Y., Meng, F., Xiao, Y., Yang, L., and Yang, J., Both PHYTOCHROME RAPIDLY REGULATED1 (PAR1) and PAR2 promote seedling photomorphogenesis in multiple light signaling pathways, Plant Physiol., 2014, vol. 164, pp. 841–852.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  78. Dhingra, A., Bies, D.H., Lehner, K.R., and Folta, K.M., Green light adjusts the plastid transcriptome during early photomorphogenic development, Plant Physiol., 2006, vol. 142, pp. 1256–1266.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  79. Zhang, T., Maruhnich, S.A., and Folta, K.M., Green light induces shade avoidance symptoms, Plant Physiol., 2011, vol. 157, pp. 1528–1536.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  80. Sasidharan, R., Chinnappa, C.C., Staal, M., Elzenga, J.T.M., Yokoyama, R., Nishitani, K., Voesenek, L.A.C.J., and Pierik, R., Light quality-mediated petiole elongation in Arabidopsis during shade avoidance involves cell wall modification by xyloglucan endotransglucosylase/hydrolases, Plant Physiol., 2010, vol. 154, pp. 978–990.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  81. Sasidharan, R., Keuskamp, D.H., Kooke, R., Voesenek, L.A.C.J., and Pierik, R., Interactions between auxin, microtubules and XTHs mediate green shadeinduced petiole elongation in Arabidopsis, PLoS One, 2014, vol. 9: e90587.

    Article  PubMed Central  PubMed  Google Scholar 

  82. Banerjee, R., Schleicher, E., Meier, S., Viana, R.M., Pokorny, R., Ahmad, M., Bittl, R., and Batschauer, A., The signaling state of Arabidopsis cryptochrome 2 contains flavin semiquinone, J. Biol. Chem., 2007, vol. 282, pp. 14 916–14 922.

    Article  CAS  Google Scholar 

  83. Jiao, Y., Lau, O.S., and Deng, X.W., Light-regulated transcriptional networks in higher plants, Nat. Rev. Genet., 2007, vol. 8, pp. 217–230.

    Article  CAS  PubMed  Google Scholar 

  84. Tang, W., Wang, W., Chen, D., Ji, Q., Jing, Y., Wang, H., and Lin, R., Transposase-derived proteins FHY3/FAR1 interact with PHYTOCHROMEINTERACTING FACTOR1 to regulate chlorophyll biosynthesis by modulating HEMB1 during deetiolation in Arabidopsis, Plant Cell, 2012, vol. 24, pp. 1984–2000.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  85. Thum, K.E., Shasha, D.E., Lejay, L.V., and Coruzzi, G.M., Lightand carbon-signaling pathways. Modeling circuits of interactions, Plant Physiol., 2003, vol. 132, pp. 440–452.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  86. Karnachuk, R.A., Negretskii, V.A., and Golovatskaya, I.F., Hormonal balance in plant leaves under light with different spectral composition, Sov. Plant Physiol., 1990, vol. 37, pp. 527–534.

    CAS  Google Scholar 

  87. Efimova, M.V., Kuznetsov, V.V., Kravtsov, A.K., Karnachuk, R.A., Khripach, V.A., and Kuznetsov, Vl.V., Regulation of the transcription of plastid genes in plants by brassinosteroids, dokl. Biol. Sci., 2012, vol. 445, pp. 272–275.

    Article  CAS  PubMed  Google Scholar 

  88. Sweere, U., Eichenberg, K., Lohrmann, J., MiraRodado, V., Bäurle, I., Kudla, J., Nagy, F., Schäfer, E., and Harter, K., Interaction of the response regulator ARR4 with phytochrome B in modulating red-light signaling, Science, 2001, vol. 294, pp. 1108–1111.

    Article  CAS  PubMed  Google Scholar 

  89. Karnachuk, R.A., Golovatskaya, I.F., Efimova, M.V., and Khripach, V.A., The effect of epibrassinolide on Arabidopsis seedling morphogenesis and hormonal balance under green light, Russ. J. Plant Physiol., 2002, vol. 49, pp. 530–533.

    Article  CAS  Google Scholar 

  90. Golovatskaya, I.F., Effect of gibberellin on Arabidopsis growth, development, and hormonal balance under green and blue light, Russ. J. Plant Physiol., 2008, vol. 55, pp. 315–320.

    Article  CAS  Google Scholar 

  91. Golovatskaya, I.F. and Karnachuk, R.A., Role of brassinolide in regulation of growth and hormonal balance in Arabidopsis thaliana (L.) Heynh. plants under green light, Vestn. Tomsk. Gos. Univ., Biologiya, 2010, no. 1 (9), pp. 13–19.

    Google Scholar 

  92. Barrero, J.M., Downie, A.B., Xu, Q., and Gubler, F., A role for barley CRYPTOCHROME1 in light regulation of grain dormancy and germination, Plant Cell, 2014, vol. 26, pp. 1094–1104.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  93. Ogawa, M., Hanada, A., Yamauchi, Y., Kuwahara, A., Kamiya, Y., and Yamaguchi, S., Gibberellin biosynthesis and response during Arabidopsis seed germination, Plant Cell, 2003, vol. 15, pp. 1591–1604.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  94. Herbel, V., Orth, C., Wenzel, R., Ahmad, M., Bittl, R., and Batschauer, A., Life-times of Arabidopsis cryptochrome signaling states in vivo, Plant J., 2013, vol. 74, pp. 583–592.

    Article  CAS  PubMed  Google Scholar 

  95. Hughes, R.M., Vrana, J.D., Song, J., and Tucker, C.L., Light-dependent, dark-promoted interaction between Arabidopsis cryptochrome 1 and phytochrome B proteins, J. Biol. Chem., 2012, vol. 287, pp. 22 165–22 172.

    Article  CAS  Google Scholar 

  96. Kang, X., Chong, J., and Ni, M., a ZZ-type zinc finger protein, regulates phytochrome B-mediated red and cryptochrome-mediated blue light responses, Plant Cell, 2005, vol. 17, pp. 822–835.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  97. Morales, L.O., Brosche, M., Vainonen, J., Jenkins, G.I., Wargent, J.J., Sipari, N., Strid, A., Lindfors, A.V., Tegelberg, R., and Aphalo, P.J., Multiple roles for UVRESISTANCE LOCUS8 in regulating gene expression and metabolite accumulation in Arabidopsis under solar ultraviolet radiation, Plant Physiol., 2013, vol. 161, pp. 744–775.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  98. Kreslavskii, V.D., Khristin, M.S., Shabnova, N.I., and Lyubimov, V.Yu., Preillumination of excised spinach leaves with red light increases resistance of photosynthetic apparatus to UV radiation, Russ. J. Plant Physiol., 2012, vol. 59, pp. 717–723.

    Article  CAS  Google Scholar 

  99. Engelhard, C., Wang, X., Robles, D., Moldt, J., Essen, L.-O., Batschauer, A., Bittl, R., and Ahmad, M., Cellular metabolites enhance the light sensitivity of Arabidopsis cryptochrome through alternate electron transfer pathways, Plant Cell, 2014, vol. 26, pp. 4519–4531.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  100. Müller, P. and Ahmad, M., Light-activated cryptochrome reacts with molecular oxygen to form a flavinsuperoxide radical pair consistent with magnetoreception, J. Biol. Chem., 2011, vol. 286, pp. 21033–21040.

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. F. Golovatskaya.

Additional information

Original Russian Text © I.F. Golovatskaya, R.A. Karnachuk, 2015, published in Fiziologiya Rastenii, 2015, Vol. 62, No. 6, pp. 776–791.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Golovatskaya, I.F., Karnachuk, R.A. Role of green light in physiological activity of plants. Russ J Plant Physiol 62, 727–740 (2015). https://doi.org/10.1134/S1021443715060084

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1021443715060084

Keywords

Navigation