Skip to main content
Log in

Construction of PDA@PAM-CMCNa-CaCl2 Vertical Porous Hydrogels for Solar-Powered Spontaneous Atmospheric Water Harvesting

  • POLYMER GELS
  • Published:
Polymer Science, Series A Aims and scope Submit manuscript

Abstract

Collecting water from the air could alleviate freshwater shortages in arid regions such as remote and inland areas. However, it is challenging to prepare adsorption materials that have high adsorption and desorption performance using straightforward synthesis routes for water harvesting applications. In this paper, a polydopamine (PDA)@Sodium polyacrylamide carboxymethyl cellulose (PAM-CMCNa)-calcium chloride (CaCl2) composite aerogel (PDCA) with a vertical channel was prepared by salt template method and photopolymerization for atmospheric water collection (AWH). The designed vertical channel promotes the rapid transport of water molecules from the atmosphere to the interior of the hydrogel through capillary action. During this process, the hydrogel further expands to prevent the leakage of the internal salt solution, which effectively improves the water vapor adsorption and desorption by hydrogel. Experimental results showed that the hydrogel can absorb 2.78 g/g of water at 90% relative humidity (RH), where 56.3% of the captured water can be desorbed within 60 min of exposure under 1.0 sun light intensity. After 10 adsorption-desorption cycles, the PDCA still possesses excellent water sorption performance. The indoor water collection test showed that the water collection performance reached 2.143 kg/kg day at 90% RH and 25°C adsorption for 12 h and desorption for 6 h. The proposed method for the preparation of PDCA composites can achieve high water harvesting performance over a wide humidity range to enable solar-driven clean water production in remote areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. A. Y. Hoekstra, Nat. Clim. Change 4, 318 (2014).

    Article  Google Scholar 

  2. Y. Tu, R. Wang, Y. Zhang, and J. Wang, Joule 2, 1452 (2018).

    Article  CAS  Google Scholar 

  3. W. Zhao, I. W. Chen, and F. Huang, Nano Today 27, 11 (2019).

    Article  CAS  Google Scholar 

  4. A. A. Salehi, M. Ghannadi-Maragheh, M. Torab-Mostaedi, R. Torkaman, and M. Asadollahzadeh, Renewable Sustainable Energy Rev. 120, 109627 (2020).

  5. Y. Zheng, R. A. Caceres Gonzalez, K. B. Hatzell, and M. C. Hatzell, Joule 5, 1971 (2021).

    Article  CAS  Google Scholar 

  6. A. J. Sayyed, D. V. Pinjari, S. H. Sonawane, B. A. Bhanvase, J. Sheikh, and M. Sillanpää, J. Environ. Chem. Eng. 9, 106626 (2021).

  7. M. Ejeian and R. Z. Wang, Joule 5, 1678 (2021).

    Article  Google Scholar 

  8. A. LaPotin, H. Kim, S. R. Rao, and E. N. Wang, Acc. Chem. Res. 52, 1588 (2019).

    Article  CAS  PubMed  Google Scholar 

  9. S. Sadek, S. Deng, J. Zhao, and M. E. Zayed, Sustainable Energy Technol. Asses. 54, 102874 (2022).

  10. M. G. Gado, M. Nasser, A. A. Hassan, and H. Hassan, Process Saf. Environ. Prot. 160, 166 (2022).

    Article  CAS  Google Scholar 

  11. Y. Chenxi, W. Jian, L. Juan, Z. Haiou, C. Tianqing, W. Yingguo, and B. Bo, ACS Sustainable Chem. Eng. 11, 3147 (2023).

    Article  Google Scholar 

  12. Y. Zhang, C. Zhu, J. Shi, S. Yamanaka, and H. Morikawa, ACS Sustainable Chem. Eng. 10, 12529 (2022).

    Article  CAS  Google Scholar 

  13. D. Gurera and B. Bhushan, J. Colloid Interface Sci. 560, 138 (2020).

    Article  CAS  PubMed  Google Scholar 

  14. X. Liu, J. Trosseille, A. Mongruel, F. Marty, P. Basset, J. Laurent, L. Royon, T. Cui, D. Beysens, and T. Bourouina, iScience 24, 102814 (2021).

  15. R. A. Pinheiro, F. M. Rosa, R. M. Volú, G. de Vasconcelos, V. J. Trava-Airoldi, and E. J. Corat, Diamond Relat. Mater. 107, 107837 (2020).

  16. G. Zhang, C. Tian, and S. Shao, Appl. Energy 136, 1010 (2014).

    Article  CAS  Google Scholar 

  17. M. Amani and M. Bahrami, Appl. Therm. Eng. 183, 116178 (2021).

  18. P. A. Davies and P. R. Knowles, Desalination 196, 266 (2006).

    Article  CAS  Google Scholar 

  19. R. Li, Y. Shi, M. Alsaedi, M. Wu, L. She, and P. Wang, Environ. Sci. Technol. 52, 11367 (2018).

    Article  CAS  Google Scholar 

  20. R. Li, Y. Shi, M. Wu, S. Hong, and P. Wang, Nano Energy 67, 104255 (2020).

  21. H. Daghooghi-Mobarakeh, M. Miner, L. Wang, R. Wang, and P. E. Phelan, Ultrasonics 124, 106769 (2022).

  22. W. Xu and O. M. Yaghi, ACS Central Sci. 6, 1348 (2020).

    Article  CAS  Google Scholar 

  23. Z. Guo, K. Li, Y. Wu, J, Wang, and Q. Li, Microporous Mesoporous Mater. 328, 111474 (2021).

  24. Y. Hu, Z. Ye, and X. Peng, Chem. Eng. J. 452, 139656 (2023).

  25. F. Zhao, X. Zhou, Y. Liu, Y. Shi, Y. Dai, and G. Yu, Adv. Mater. 31, 1806446 (2019).

  26. Z. Zhang, Y. Wang, Z. Li, H. Fu, J. Huang, Z. Xu, Y. Lai, X. Qiang, and S. Zhang, ACS Appl. Mater. Interfaces 14, 55295 (2022).

    Article  CAS  PubMed  Google Scholar 

  27. X. Wang, D. Yang, M. Zhang, Q. Hu, K. Gao, J. Zhou, Z.-Z. Yu, ACS Appl. Mater. Interfaces 14, 33881 (2022).

    Article  CAS  Google Scholar 

  28. H. Park, I. Haechler, G. Schnoering, M. D. Ponte, T. M. Schutzius, and D. Poulikakos, ACS Appl. Mater. Interfaces 14, 2237 (2022).

    Article  CAS  PubMed  Google Scholar 

  29. R. Li, Y. Shi, M. Alsaedi, M. Wu, L. She, and P. Wang, Environ. Sci. Technol. 52, 11367 (2018).

    Article  CAS  PubMed  Google Scholar 

  30. M. Wang, T. Sun, D. Wan, M. Dai, S. Ling, J. Wang, Y. Liu, Y. Fang, S. Xu, J. Yeo, H. Yu, S. Liu, Q. Wang, J. Li, Y. Yang, Z. Fan, and W. Chen, Nano Energy 80, 105569 (2021).

  31. J. Xu, T. Li, J. Chao, S. Wu, T. Yan, W. Li, B. Cao, and R. Wang, Angew. Chem. Int. Ed. Eng. 59, 5202 (2020).

    Article  CAS  Google Scholar 

  32. H. Mittal, A. A. Alili, and S. M. Alhassan, J. Environ. Chem. Eng. 9, 106611 (2021).

  33. T. Lyu, Z. Wang, R. Liu, K. Chen, H. Liu, and Y. Tian, ACS Appl. Mater. Interfaces 14, 32433 (2022).

    Article  PubMed  Google Scholar 

  34. H. Yin, S. Li, H. Xie, Y. Wu, X. Zou, Y. Huang, and J. Wang, Colloids Surf., A 642, 128428 (2022).

  35. J. Yang, Y. Chen, X. Jia, Y. Li, S. Wang, and H. Song, ACS Appl. Mater. Interfaces 12, 47029 (2020).

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work is grateful for the support of the National Nature Science Foundation of China (82060646); Program of Science and Technology Innovation Team in Bingtuan (2020CB006) and Regional Innovation Guidance Program of Bingtuan (2021BB033).

Author information

Authors and Affiliations

Authors

Contributions

Tiantian Ren carried out the experiment and wrote the manuscript. Yuanyuan Xu assisted on the materials synthesis experiment. Jianning Wu, Guihua Meng and Zhiyong Liu supervised the project and took the lead in writing the manuscript. Lin Cui, Shengchao Yang, and Xuhong Guo contributed to the interpretation of the results and gave the advice on the manuscript.

Corresponding authors

Correspondence to Jianning Wu, Guihua Meng or Zhiyong Liu.

Ethics declarations

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tiantian Ren, Xu, Y., Wu, J. et al. Construction of PDA@PAM-CMCNa-CaCl2 Vertical Porous Hydrogels for Solar-Powered Spontaneous Atmospheric Water Harvesting. Polym. Sci. Ser. A 65, 358–368 (2023). https://doi.org/10.1134/S0965545X23701079

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965545X23701079

Navigation