Skip to main content
Log in

Oxidation induced changes in viscoelastic properties of a thermostable epoxy matrix

  • Polymer Destruction
  • Published:
Polymer Science Series A Aims and scope Submit manuscript

Abstract

The thermal ageing of a neat epoxy matrix has been studied at 473 K in air by three complementary analytical techniques: optical microscopy, dynamic mechanical analysis and nano-indentation. Thermal oxidation is restricted in a superficial layer of about 195 μm of maximal thickness. It consists in a predominant chain scission process involving, in particular, chemical groups whose β motions have the highest degree of cooperativity and thus, are responsible for the high temperature side of β dissipation band. As a result, chain scissions decrease catastrophically the glass transition temperature, but also increase significantly the storage modulus at glassy plateau between T β and T α. This phenomenon is called “internal antiplasticization”. Starting from these observations, the Di Marzio and Gilbert’s theories have been used in order to establish relationships between the glass transition temperature and number of chain scissions, and between the storage modulus and β transition activity respectively. The challenge is now to establish a relationship between the β transition activity and the concentration of the corresponding chemical groups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. X. Colin, C. Marais, and J. Verdu, Polym. Test. 20, 795 (2001).

    Article  CAS  Google Scholar 

  2. X. Colin, C. Marais, and J. Verdu, Polym. Degrad. Stab. 78, 545 (2002).

    Article  CAS  Google Scholar 

  3. J. Decelle, N. Huet, and V. Bellenger, Polym. Degrad. Stab. 81, 239 (2003).

    Article  CAS  Google Scholar 

  4. X. Colin, C. Marais, and J. Verdu, Compos. Sci. Technol. 65, 117 (2005).

    Article  CAS  Google Scholar 

  5. L. Achimsky, L. Audouin, J. Verdu, J. Rychly, and L. Matisova-Rychla, Polym. Degrad. Stab. 58, 283 (1997).

    Article  CAS  Google Scholar 

  6. L. Olivier, N. Q. Ho, J. C. Grandidier, and M. C. Lafarie-Frenot, Polym. Degrad. Stab. 93, 489 (2008).

    Article  CAS  Google Scholar 

  7. M. Gigliotti, D. Q. Vu, L. Olivier, and J. C. Grandidier, Mech. Phys. Solids 59, 696 (2011).

    Article  CAS  Google Scholar 

  8. D. Q. Vu, M. Gigliotti, and M. C. Lafarie-Frenot, Composites A 43, 577 (2012).

    Article  CAS  Google Scholar 

  9. T. Devanne, A. Bry, N. Raguin, M. Sebban, P. Palmas, L. Audouin, and J. Verdu, Polymer 46, 237 (2005).

    Article  CAS  Google Scholar 

  10. N. Rasoldier, X. Colin, J. Verdu, M. Bocquet, L. Olivier, L. Chocinski-Arnault, and M. C. Lafarie-Frenot, Composites A 39, 1522 (2008).

    Article  Google Scholar 

  11. E. A. DiMarzio, J. Res. Natl. Bur. Stand. A 68, 611 (1964).

    Article  Google Scholar 

  12. D. G. Gilbert, M. F. Ashby, and P. W. R. Beaumont, J. Mater. Sci. 21, 3194 (1986).

    Article  CAS  Google Scholar 

  13. User Guide 423 Revision A, Nanoindentation for Nanoscope Software, Version 7 (Veeco Metrology Group, 2007).

  14. L. Heux, J. L. Halary, F. Laupretre, and L. Monnerie, Polymer 38, 1767 (1997).

    Article  CAS  Google Scholar 

  15. G. A. Pogany, Polymer 11, 66 (1970).

    Article  CAS  Google Scholar 

  16. D. Colombini, J. Martinez-Vega, and G. Merle, Polym. Bull. (Berlin) 48, 75 (2002).

    Article  CAS  Google Scholar 

  17. D. Colombini, PhD Thesis (INSA de Lyon, France, 1999).

  18. V. Gupta, L. Drzal, C. Lee, and M. Rich, Polym. Eng. Sci. 25, 812 (1985).

    Article  CAS  Google Scholar 

  19. M. Schimbo, M. Ochi, and M. Yoshizumi, J. Polym. Sci., Part B: Polym. Phys. 25, 1817 (1987).

    Article  Google Scholar 

  20. M. Le Huy, M. Bellenger, and J. Verdu, Polym. Degrad. Stab. 35, 77 (1992).

    Article  Google Scholar 

  21. M. Le Huy, V. Bellenger, M. Paris, and J. Verdu, Polym. Degrad. Stab. 35, 171 (1992).

    Article  Google Scholar 

  22. M. Le Huy, V. Bellenger, M. Paris, and J. Verdu, Polym. Degrad. Stab. 41, 149 (1993).

    Article  CAS  Google Scholar 

  23. V. Bellenger, E. Morel, and J. Verdu, J. Polym. Sci., Part B: Polym. Phys. 25, 1219 (1987).

    Article  CAS  Google Scholar 

  24. D. W. Van Krevelen, Properties of Polymers: Their Correlation with Chemical Structure. Their Numerical Estimation and Prediction from Additive Group Contributions, 4th ed. (Elsevier, Amsterdam, 2009), Chap. 6, p. 132.

    Google Scholar 

  25. A. Bondi, Physical Properties of Molecular Liquids, Crystals and Glasses (Wiley, New York, 1968).

    Google Scholar 

  26. J. Small, J. Appl. Chem. 3, 71 (1953).

    Article  CAS  Google Scholar 

  27. D. W. Van Krevelen, Properties of Polymers: Their Correlation with Chemical Structure. Their Numerical Estimation and Prediction from Additive Group Contributions, 4th ed. (Elsevier, Amsterdam, 2009), Chap. 6, p. 194.

    Google Scholar 

  28. R. F. Fedors, Polym. Eng. Sci. 14, 147 (1974).

    Article  CAS  Google Scholar 

  29. J.-P. Pascault, H. Sautereau, J. Verdu, and R. J. J. Williams, Thermosetting Polymers (Marcel Dekker, New York, 2002).

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Svetlana Terekhina.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Terekhina, S., Mille, M., Fayolle, B. et al. Oxidation induced changes in viscoelastic properties of a thermostable epoxy matrix. Polym. Sci. Ser. A 55, 614–624 (2013). https://doi.org/10.1134/S0965545X13090058

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965545X13090058

Keywords

Navigation