Skip to main content
Log in

Why does the rouse model fairly describe the dynamic characteristics of polymer melts at molecular masses below critical mass?

  • Theory, Modeling
  • Published:
Polymer Science Series A Aims and scope Submit manuscript

Abstract

Generalization of the Rouse model without any use of the postulates concerning the Gaussian distribution of the vector connecting the ends of segments is advanced. In the initial (in general, nonlinear) Langevin equations, self-averaging over continuous fragments of a macromolecule naturally defines a linear term for the tagged chain, and this term differs from the entropy term of the classical Rouse model only by the numerical coefficient. According to the inertia-free approximation, the initial decay rates of correlation functions for the normal modes are described by the Rouse model independently of the character of fluctuations of the vector connecting the ends of the Kuhn segment. This statement is valid for any moment if the initial Langevin equations are treated in terms of the approximation of dynamic self-consistency. Simulation of the Fraenkel chains by the method of Brownian dynamics shows that decay of autocorrelation functions of shortwave normal modes is fairly described by the linearized equations for a given model of a chain and that the Rouse equation can be used for the long-wave modes. The results of this study make it possible to explain a marked difference between the lengths of the Kuhn and Rouse segments that is estimated from static and dynamic experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. A. Kargin and G. L. Slonimskii, Zh. Fiz. Khim. 23, 563 (1949).

    CAS  Google Scholar 

  2. Yu. Ya. Gotlib, Thesis (Leningr. Gos. Univ., Leningrad, 1952).

  3. Yu. A. Krutkov, Dokl. Akad. Nauk SSSR 1, 393 (1934).

    CAS  Google Scholar 

  4. Yu. A. Krutkov, Dokl. Akad. Nauk SSSR 1, 479 (1934).

    CAS  Google Scholar 

  5. Yu. A. Krutkov, Dokl. Akad. Nauk SSSR 3, 87 (1934).

    CAS  Google Scholar 

  6. Yu. A. Krutkov, Dokl. Akad. Nauk SSSR 3, 215 (1934).

    Google Scholar 

  7. Yu. A. Krutkov, Dokl. Akad. Nauk SSSR 1, 599 (1935).

    Google Scholar 

  8. Yu. A. Krutkov, Dokl. Akad. Nauk SSSR 5, 289 (1935).

    Google Scholar 

  9. P. E. Rouse, J. Chem. Phys. 21, 1273 (1953).

    Article  Google Scholar 

  10. M. Doi and S. F. Edwards, The Theory of Polymer Dynamics (Clarendon, Oxford, 1986; Mir, Moscow, 1998).

    Google Scholar 

  11. P. G. De Gennes, Scaling Concepts in Polymer Physics (Cornell Univ. Press, Ithaca, 1970; Mir, Moscow, 1982).

    Google Scholar 

  12. A. Yu. Grosberg and A. R. Khokhlov, Statistical Physics of Macromolecules (Nauka, Moscow, 1969; American Institute of Physics, Ithaca, 1994).

    Google Scholar 

  13. Yu. Ya. Gotlib, A. A. Darinskii, and Yu. E. Svetlov, Physical Kinetics of Macromolecules (Khimiya, Leningrad, 1986) [in Russian].

    Google Scholar 

  14. J. D. Ferry, Viscoelastic Properties of Polymers (Wiley, New York, 1980).

    Google Scholar 

  15. R. Kimmich and N. Fatkullin, Adv. Polym. Sci. 170, 1 (2004).

    CAS  Google Scholar 

  16. W. W. Graessley, Adv. Polym. Sci. 47, 1 (1982).

    Article  Google Scholar 

  17. N. K. Balabaev, Yu. Ya. Gotlib, A. A. Darinskii, and I. M. Neelov, Vysokomol. Soedin., Ser. A 20, 2194 (1978).

    CAS  Google Scholar 

  18. J. Skolnick and A. Kolinski, Adv. Chem. Phys. 78, 223 (1990).

    Article  CAS  Google Scholar 

  19. K. Kremer and G. S. Grest, J. Chem. Phys. 92, 5057 (1990).

    Article  CAS  Google Scholar 

  20. K. Binder and W. Paul, J. Polym. Sci., Part B: Polym. Phys. 35, 1 (1997).

    Article  CAS  Google Scholar 

  21. J. S. Shaffer, J. Chem. Phys. 103, 761 (1995).

    Article  CAS  Google Scholar 

  22. K. S. Schweizer, J. Chem. Phys. 91, 5802 (1989).

    Article  CAS  Google Scholar 

  23. K. S. Schweizer, M. Fuchs, G. Szamel, et al., Macromol. Theory Simul. 6, 1037 (1997).

    Article  CAS  Google Scholar 

  24. V. N. Pokrovskii, Adv. Polym. Sci. 154, 145 (2001).

    Google Scholar 

  25. N. F. Fatkullin, R. Kimmich, and M. Kroutieva, Zh. Eksp. Teor. Fiz. 118, 170 (2000).

    Google Scholar 

  26. M. A. Krut’eva, N. F. Fatkullin, and R. Kimmikh, Polymer Science, Ser. A 47, 1022 (2005) [Vysokomol. Soedin., Ser. A 47, 1716 (2005)].

    Google Scholar 

  27. G. K. Fraenkel, J. Chem. Phys. 20, 642 (1952).

    Article  CAS  Google Scholar 

  28. Y.-H. Lin and A. K. Das, J. Chem. Phys. 126, 074902–1 (2007).

    Article  Google Scholar 

  29. Y. Ding and A. P. Sokolov, J. Polym. Sci., Part B: Polym. Phys. 42, 3505 (2004).

    Article  CAS  Google Scholar 

  30. A. Brodin, J. Chem. Phys. 128, 104901 (2008).

    Article  Google Scholar 

  31. L. Harnau, R. G. Winkler, and P. Reineker, J. Chem. Phys. 102, 7750 (1995).

    Article  CAS  Google Scholar 

  32. H. Meyer, J. P. Wittmer, N. Kreer, et al., Eur. Phys. J., E 26, 25 (2008).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. F. Fatkullin.

Additional information

Original Russian Text © N.F. Fatkullin, T.M. Shakirov, N.A. Balakirev, 2010, published in Vysokomolekulyarnye Soedineniya, Ser. A, 2010, Vol. 52, No. 1, pp. 67–76.

This work was supported by the Russian Foundation for Basic Research, project no. 07-03-00222-a.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fatkullin, N.F., Shakirov, T.M. & Balakirev, N.A. Why does the rouse model fairly describe the dynamic characteristics of polymer melts at molecular masses below critical mass?. Polym. Sci. Ser. A 52, 72–81 (2010). https://doi.org/10.1134/S0965545X10010104

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965545X10010104

Keywords

Navigation