Skip to main content
Log in

Influence of Demulsifier Aging on Its Performance in Heavy Oil Synthetic Emulsions

  • Published:
Petroleum Chemistry Aims and scope Submit manuscript

Abstract

Flow assurance is one of the main challenges in the oil industry. Many factors can affect the oil fluidity, including the oil °API and the formation of water-in-oil (w/o) emulsions that increase the fluid viscosity. The demulsification process aims to decrease as much as possible the water content in the crude oil. Chemical products known as demulsifiers can be used to aid in this process. In laboratory, the chemicals can be evaluated under temperature and water content conditions similar to those in the oil field. In this work, the effect of demulsifier aging on its performance, simulating oil field storage, was evaluated using synthetic w/o emulsion prepared with a heavy crude oil and brine at 55 000 ppm. The crude oil was characterized and some demulsifier properties were measured along the time. The crude oil was identified as a heavy oil containing 11.6% of asphaltenes, contributing to the w/o emulsion stability. The demulsifier performance increased with aging time, and the results strongly suggested that a mere evaporation of the additive solvent occurs, concentrating its active matter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. Farah, M.A., Petróleo e seus derivados: definição, constituição, aplicação, especificações, caracterização, Rio de Janeiro: LTC, 2012.

  2. Gauto, M., Petróleo e Gás – Princípios de exploração, produção e refino, Porto Alegre: Bookman, 2016.

  3. Díaz-Prada, C.A., Guarin-Arenas, F., GonzalezBarbosa, J.-E., Garcia-Chinchilla, C.-A., de Jesus Cotes-Leon, E., and Rodriguez-Walteros, C., CTF – Cienc. Tecn. Fut., 2010, vol. 4, no. 1, pp. 63–73. https://doi.org/10.29047/01225383.439

    Article  Google Scholar 

  4. Boyd, J., Parkinson, C., and Sherman, P., J. Colloid and Interface Sci., 1972, vol. 41, no. 2, pp. 359–370. https://doi.org/10.1016/0021-9797(72)90122-1

    Article  CAS  Google Scholar 

  5. Friberg, S.E., Emulsions – A Fundamental and Practical Approach, Sjöblom, J., Ed., NATO ASI Series, Dordrecht: Springer, 1992, vol. 363. https://doi.org/10.1007/978-94-011-2460-7_1

  6. Maia Filho, D.C., Ramalho, J.B.V.S., Spinelli, L., and Lucas, E.F., Colloids Surf. A: Physicochem. Eng. Asp., 2012, vol. 396, pp. 208–212. https://doi.org/10.1016/j.colsurfa.2011.12.076

    Article  CAS  Google Scholar 

  7. Maia Filho, D.C., Ramalho, J.B.V.S., Lucas, G.M.S., and Lucas, E.F., Colloids Surf. A: Physicochem. Eng. Asp., 2012, vol. 405, pp. 73–78. https://doi.org/10.1016/j.colsurfa.2012.04.041

    Article  CAS  Google Scholar 

  8. Goodarzi, F. and Zendehboudi, S., Can. J. Chem. Eng., 2018, vol. 97, no. 1, pp. 281–309. https://doi.org/10.1002/cjce.23336

    Article  CAS  Google Scholar 

  9. Yudina, N.V., Loskutova, Y.V., and Nebogina, N.A., Petrol. Chem., 2022, vol. 62, no. 2, pp. 183–190. https://doi.org/10.1134/S0965544122060068

    Article  CAS  Google Scholar 

  10. Gafonova, O.V. and Yarranton, H.W., J. Colloid Interface Sci., 2001, vol. 241, no. 2, pp. 469–478. https://doi.org/10.1006/jcis.2001.7731

    Article  CAS  Google Scholar 

  11. Nebogina, N.A., Prozorova, I.V., Savinykh, Yu.V., and Yudina, N.V., Petrol. Chem., 2010, vol. 50, no. 2, pp. 158–163. https://doi.org/10.1134/S0965544110020131

    Article  Google Scholar 

  12. Petrov, S.M., Ibragimova, D.A., Abdelsalam, Ya.I.I., and Kayukova, G.P., Petrol. Chem., 2016, vol. 56, no. 1, pp. 21–26. https://doi.org/10.1134/S0965544116010059

    Article  CAS  Google Scholar 

  13. Orrego-Ruíz, J.A. and Ruiz, F., CTF – Cienc. Tecn. Fut., 2018, vol. 8, no. 1, pp. 45–52. https://doi.org/10.29047/01225383.90

    Article  CAS  Google Scholar 

  14. Gorbacheva, S.N. and Ilyin, S.O., Colloids Surf. A: Physicochem. Eng. Asp., 2021, vol. 618, p. 126442. https://doi.org/10.1016/j.colsurfa.2021.126442

    Article  CAS  Google Scholar 

  15. Yudina, N.V., Nebogina, N.A., and Prozorova, I.V., Petrol. Chem., 2021, vol. 61, no. 5, pp. 568–575. https://doi.org/10.1134/S0965544121060050

    Article  CAS  Google Scholar 

  16. Glagoleva, O.F. and Kapustin, V.M., Petrol. Chem., 2020, vol. 60, no. 11, pp. 1207–1215. https://doi.org/10.1134/S0965544120110092

    Article  CAS  Google Scholar 

  17. Ramalho, J.B.V.S., Lechuga, F.C., and Lucas, E.F., Quim. Nova, 2010, vol. 33, no. 8, pp. 1664–1670. https://doi.org/10.1590/S0100-40422010000800009

    Article  CAS  Google Scholar 

  18. Ferreira, B.M.S., Ramalho, J.B.V.S., and Lucas, E.F., Energy Fuels, 2013, vol. 27, no. 2, pp. 615–621. https://doi.org/10.1021/ef301110m

    Article  CAS  Google Scholar 

  19. Pacheco, V.F., Ferreira, L.S., Lucas, E.F., and Mansur, C.R.E., Energy Fuels, 2015, vol. 5, pp. 1659–1666. https://doi.org/10.1021/ef101769e

    Article  CAS  Google Scholar 

  20. Hajivand, P. and Vaziri, A., Braz. J. Chem. Eng., 2015, vol. 32, pp. 107–118. https://doi.org/10.1590/0104-6632.20150321s00002755

    Article  Google Scholar 

  21. Kang, W., Yin, X., Yang, H., Zhao, Y., Huang, Z., Hou, X., Sarsenbekuly, B., Zhu, Z., Wang, P., Zhang, X., Geng, J., and Aidarova, S., Colloids Surf. A: Physicochem. Eng. Asp., 2018, vol. 545, pp. 197–204. https://doi.org/10.1016/j.colsurfa.2018.02.055

    Article  CAS  Google Scholar 

  22. Saad, M.A., Kamil, M., Abdurahman, N.H., Yunus, R.M., and Awad, O.I., Processes, 2019, vol. 7, p. 470. https://doi.org/10.3390/pr7070470

    Article  CAS  Google Scholar 

  23. Society for Testing and Materials, ASTM D4377-00, Standard Test Method for Water in Crude Oils by Potentiometric Karl Fischer Titration. West Conshohocken, 2011.

  24. Silva, J.C., Maravilha, T.S.L., Nunes, R.C.P., and Lucas, E.F., J. Mater. Educ., 2019, vol. 41, nos. 5–6, p. 149.

    Google Scholar 

  25. Garreto, M.S.E., Gonzalez, G., Ramos, A.C., and Lucas, E.F., Chem. Chem. Technol., 2010, vol. 4, no. 4, pp. 317–323. https://doi.org/10.23939/chcht04.04.317

    Article  Google Scholar 

  26. Vieira, L.C., Buchuid, M.B., and Lucas, E.F., Energy Fuels, 2010, vol. 24, no. 4, pp. 2213–2220. https://doi.org/10.1021/ef900761t

    Article  CAS  Google Scholar 

  27. Oliveira, L.M.S.L., Nunes, R.C.P., Ribeiro, Y.L.L., Ribeiro, D.M., Coutinho, D.A., Azevedo, J.C.M., and Lucas, E.F., J. Braz. Chem. Soc., 2018, vol. 29, no. 10, pp. 2158–2168. https://doi.org/10.21577/0103-5053.20180092

    Article  CAS  Google Scholar 

  28. American Society for Testing and Materials, ASTM D97-17b, Standard Test Method for Pour Point of Petroleum Products. West Conshohocken, 2017.

  29. Oliveira, L.M.S.L., Nunes, R.C.P., Pessoa, L.M.B., Reis, L.G., Spinelli, L.S., and Lucas, E.F., J. Appl. Polym. Sci., 2020, vol. 137, p. 48969. https://doi.org/10.1002/app.48969

    Article  CAS  Google Scholar 

  30. American Society for Testing and Materials, ASTM D4052, Standard Test Method for Density, Relative Density, and API Gravity of Liquids by Digital Density Meter. West Conshohocken, 2018.

  31. American Society for Testing and Materials, ASTM D664-18e2, Standard Test Method for Acid Number of Petroleum Products by Potentiometric Titration. West Conshohocken, 2018.

  32. Silva, J.C., et al., Tratamento de óleo – desemulsificação, in Procedimentos experimentais de avaliação de aditivos poliméricos para a indústria do petróleo, Lucas, E.F., Ferreira, L.S., Alves, B.F., Eds., Rio de Janeiro: Editora UFRJ, 2022 (on press).

Download references

Funding

The work was financed by Equinor Brazil and ANP (Brazil’s National Oil, Natural Gas and Biofuels Agency) through the R&D levy regulation. Elizabete F. Lucas thanks FAPERJ (E-26/200.974/2021), CNPq (303.583/2019-3) and Petrobras.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rita de Cassia P. Nunes.

Ethics declarations

The authors declare no conflict of interest requiring disclosure in this article. This statement is to certify that all authors have seen and approved the manuscript being submitted. We warrant that the article is the authors’ original work. We warrant that the article has not received prior publication and is not under consideration for publication elsewhere. On behalf of all co-authors, the corresponding author shall bear full responsibility for the submission. We attest to the fact that all authors listed on the title page have contributed significantly to the work, have read the manuscript, attest to the validity and legitimacy of the data and its interpretation, and agree to its submission to the Journal of Petroleum Chemistry.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nunes, R.d.C.P., Silva, C.M.F., Rocha, P.C.S. et al. Influence of Demulsifier Aging on Its Performance in Heavy Oil Synthetic Emulsions. Pet. Chem. 63, 925–930 (2023). https://doi.org/10.1134/S0965544123030076

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965544123030076

Keywords:

Navigation