Skip to main content
Log in

Synthesis, Characterization, and Application of TiO2–Magnetite/Chitosan Nanocomposite for Adsorptive Removal of Naphthalene from Aqueous Solutions

  • Published:
Petroleum Chemistry Aims and scope Submit manuscript

Abstract

This study demonstrates the synthesis of titanium oxide-magnetite/chitosan nanocomposite (TiO2–MNPs/CT) where TiO2 nanoparticles were precipitated onto prepared MNPs followed by immobilization onto CT. The prepared nanocomposite was investigated using scanning electron microscopy, X-ray diffraction spectrometry, and Fourier transform infrared spectrometry. The nanocomposite was applied for adsorptive removal of naphthalene, which is the most prevalent compound of the most hazardous polycyclic aromatic hydrocarbon, from aqueous solutions. The parameters assumed to considerably controlling the removal process was optimized. The highest removal efficiency (98%) with the maximum adsorption capacity (49.7 mg/g) was obtained at pH 7, adsorbent concentration 2 g/L, and contact time 24 h. The experimental results were analyzed using isotherm models including Langmuir, Freundlich, and Dubinin–Radushkevich, which revealed multilayer adsorption with maximum adsorption capacity of 60.48 mg/g. The kinetic studies showed good fit for the experimental results with pseudo-second order model referring to the presence of chemical adsorption. Furthermore, the spent adsorbent particles were regenerated via shaking with ethanol for 60 min and studied in repeated adsorption cycles. Slight decrease after the fifth adsorption-regeneration cycle was observed, indicating good stability of the nanocomposite against regeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Arizavi, A., Mirbagheri, N., Hosseini, Z., Chen, P., and Sabbaghi, S., Int. J. Environ. Sci. Technol., 2020, vol. 17, pp. 1991–2002. https://doi.org/10.1007/s13762-019-02521-1

    Article  CAS  Google Scholar 

  2. Idriss, I.E., Abdel-Azim, M., Karar, K.I., Osman, S., and Idris, A.M., Tox. Rev., 2021, vol. 40, no. 4, pp. 764–776. https://doi.org/10.1080/15569543.2020.1775255

    Article  CAS  Google Scholar 

  3. Ibrahim, K.A., Warrag, E.I., Ebraheem, S.A.M., Khan, M.A., Fawy, K.F., Ateeg, A.A., and Idris, A.M., Fresen. Environ. Bull., 2020, vol. 29, no. 5, pp. 3940–3951.

    CAS  Google Scholar 

  4. Patiño-Ruiz, D.A., De Ávila, G., Alarcón-Suesca, C., González-Delgado, A.D., and Herrera, A., ACS Omega, 2020, vol. 5, no. 41, pp. 26463–26475. https://doi.org/10.1021/acsomega.0c02984

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Said, T.O., Idris, A.M., and Sahlabji, T., Polycycl. Aromat. Comp., 2020, vol. 40, pp. 758–773. https://doi.org/10.1080/10406638.2018.1481114

    Article  CAS  Google Scholar 

  6. Preuss, R., Angerer, J., and Drexler, H., Int. Arc. Occup. Environ. Health, 2003, vol. 76, pp. 556–576. https://doi.org/10.1007/s00420-003-0458-1

    Article  CAS  Google Scholar 

  7. Bhandari, R., Harsha Vardhan, K., Kumar, P.S., and Gayathri, K.V., Int. J. Environ. Anal. Chem., 2021, in press. https://doi.org/10.1080/03067319.2020.1863390

  8. Zeng, G., Yang, R., Fu, X., Zhou, Z., Xu, Z., Zhou, Z., Qiu, Z., Sui, Q., and Lyu, S., Sep. Purif. Technol., 2021, vol. 264, 118441. https://doi.org/10.1016/j.seppur.2021.118441

  9. Alshabib, M., Int. J. Environ. Sci. Technol., 2021, in press. https://doi.org/10.1007/s13762-021-03428-6

  10. Marshall, T., Marangoni, A.G., Laredo, T., Estepa, K.M., Corradini, M.G., Lim, L.-T., and Pensini, E., Colloids Surf., A, 2020, vol. 607, p. 125518. https://doi.org/10.1016/j.colsurfa.2020.125518

    Article  CAS  Google Scholar 

  11. Zango, Z.U., Jumbri, K., Zaid, H., Sambudi, N., and Matmin, J., IOP Conf. Ser.: Earth Environ. Sci., 2021, vol. 842, p. 012015. https://doi.org/10.1088/1755-1315/842/1/012015

    Article  Google Scholar 

  12. Hung, C.-M., Huang, C.-P., Lam, S.S., Chen, C.-W., and Dong, C.-D., J. Environ. Chem. Eng., 2020, vol. 8, p. 104440. https://doi.org/10.1016/j.jece.2020.104440

    Article  CAS  Google Scholar 

  13. Song, T., Tian, W., Qiao, K., Zhao, J., Chu, M., Du, Z., Wang, L., and Xie, W., Sep. Purif. Technol., 2021, vol. 254, p. 117565. https://doi.org/10.1016/j.seppur.2020.117565

    Article  CAS  Google Scholar 

  14. Flores-Chaparro, C., Castilho, C., Külaots, I., and Hurt, R.H., and Rangel-Mendez, J., J. Environ. Manage, 2020, vol. 259, p. 110044. https://doi.org/10.1016/j.jenvman.2019.110044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Dimitriadou, S., Frontistis, Z., Petala, A., Bampos, G., and Mantzavinos, D., Catal. Today, 2020, vol. 355, pp. 937–944. https://doi.org/10.1016/j.cattod.2019.02.025

    Article  CAS  Google Scholar 

  16. Thakur, G., Singh, A., and Singh, I., Sci. Pharm., 2016, vol. 84, no. 4, pp. 603–617. https://doi.org/10.3390/scipharm84040603

    Article  CAS  Google Scholar 

  17. Günister, E., Pestreli, D., Ünlü, C.H., Atıcı, O., and Güngör, N., Carbohydr. Polym., 2007, vol. 67, no. 3, pp. 358–365. https://doi.org/10.1016/j.carbpol.2006.06.004

    Article  CAS  Google Scholar 

  18. Nekouei, F., Nekouei, S., Tyagi, I., and Gupta, V.K., J. Mol. Liq., 2015, vol. 201, pp. 124–133. https://doi.org/10.1016/j.molliq.2014.09.027

    Article  CAS  Google Scholar 

  19. Huang, L., Zhou, Y., Guo, X., and Chen, Z., J. Ind. Eng. Chem., 2015, vol. 22, pp. 280–287. https://doi.org/10.1016/j.jiec.2014.07.021

    Article  CAS  Google Scholar 

  20. Celebi, O., Üzüm, Ç., Shahwan, T., and Erten, H.N., J. Hazard. Mater., 2007, vol. 148, no. 3, p. 761–767. https://doi.org/10.1016/j.jhazmat.2007.06.122

    Article  CAS  PubMed  Google Scholar 

  21. Israel, U. and Eduok, U., Arch. Appl. Sci. Res., 2012, vol. 4, p. 809–819.

    CAS  Google Scholar 

  22. Mittal, A., Mittal, J., Malviya, A., and Gupta, V., J. Colloid Interface Sci., 2010, vol. 344, no. 2, pp. 497–507. https://doi.org/10.1016/j.jcis.2010.01.007

    Article  CAS  PubMed  Google Scholar 

  23. Ali, I., Burakova, I., Galunin, E., Burakov, A., Mkrtchyan, E., Melezhik, A., Kurnosov, D., Tkachev, A., and Grachev, V., ACS Omega, 2019, vol. 4, no. 21, pp. 19293–19306. https://doi.org/10.1021/acsomega.9b02669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wu, F.-C., Tseng, R.-L., and Juang, R.-S., Chem. Eng. J., 2009, vol. 153, nos. 1–3, pp. 1–8. https://doi.org/10.1016/j.cej.2009.04.042

    Article  CAS  Google Scholar 

  25. Jiang, L., Liu, Y., Zeng, G., Xiao, F., Hu, X., Hu, X., Wang, H., Li, T.-T., Zhou, L., and Tan, X., Chem. Eng. J., 2016, vol. 284, pp. 93–102. https://doi.org/10.1016/j.cej.2015.08.139

    Article  CAS  Google Scholar 

  26. Gupta, V.K., Nayak, A., Agarwal, S., and Tyagi, I., J. Colloid Interface Sci., 2014, vol. 417, pp. 420–430. https://doi.org/10.1016/j.jcis.2013.11.067

    Article  CAS  PubMed  Google Scholar 

  27. Cheng, H., Bian, Y., Wang, F., Jiang, X., Ji, R., Gu, C., Yang, X., and Song, Y., Bioresour. Technol., 2019, vol. 284, pp. 1–8. https://doi.org/10.1016/j.biortech.2019.03.104

    Article  CAS  PubMed  Google Scholar 

  28. Doğan, M. and Alkan, M., Chemosphere, 2003, vol. 50, no. 4, pp. 517–528. https://doi.org/10.1016/S0045-6535(02)00629-X

    Article  PubMed  Google Scholar 

  29. Zhou, Y., Jin, X.-Y., Lin, H., and Chen, Z.-L., Chem. Eng. J., 2011, vol. 166, no. 1, pp. 176–183. https://doi.org/10.1016/j.cej.2010.10.058

    Article  CAS  Google Scholar 

  30. Eeshwarasinghe, D., Loganathan, P., Kalaruban, M., Sounthararajah, D.P., Kandasamy, J., and Vigneswaran, S., Environ. Sci. Pollut. Res., 2018, vol. 25, pp. 13511– 13524. https://doi.org/10.1007/s11356-018-1518-0

    Article  CAS  Google Scholar 

  31. Wang, J., Chen, B., and Xing, B., Environ. Sci. Technol., 2016, vol. 50, no. 7, pp. 3798–3808. https://doi.org/10.1021/acs.est.5b04865

    Article  CAS  PubMed  Google Scholar 

  32. Das, P., Goswami, S., and Maiti, S., Front. Nanosci. Nanotechnol., 2016, vol. 2, no. 1, pp. 38–42. https://doi.org/10.15761/FNN.1000107

    Article  Google Scholar 

  33. Wang, C., Leng, S., Xu, Y., Tian, Q., Zhang, X, Cao, L., and Huang, J., Minerals, 2018, vol. 8, no. 4, pp. 145/1–145/14. https://doi.org/10.3390/min8040145

    Article  CAS  Google Scholar 

  34. Lin, Y.-H., Appl. Water Sci., 2017, vol. 7, pp. 3741–3757. https://doi.org/10.1007/s13201-016-0522-0

    Article  CAS  Google Scholar 

  35. Costa, J.A.S., Sarmento, V.H., Romão, L.P., and Paranhos, C.M., Environ. Sci. Pollut. Res., 2019, vol. 26, pp. 25476–25490. https://doi.org/10.1007/s11356-019-05852-1

    Article  CAS  Google Scholar 

  36. Costa, J.A., Sarmento, V.H., Romao, L.P., and Paranhos, C.M., Silicon, 2020, vol. 12, pp. 1913–1923. https://doi.org/10.1007/s12633-019-00289-0

    Article  CAS  Google Scholar 

  37. Costa, J.A.S., Sarmento, V.H., Romão, L.P., and Paranhos, C.M., Biomass Conv. Bioref., 2020, vol. 10, pp. 1105–1120. https://doi.org/10.1007/s13399-019-00476-4

    Article  CAS  Google Scholar 

  38. Yang, L., Qian, X., Wang, Z., Li, Y., Bai, H., and Li, H., Adsorpt. Sci. Technol., 2018, vol. 36, nos. 3–4, pp. 1160–1177. https://doi.org/10.1177/0263617418756407

    Article  CAS  Google Scholar 

  39. Barman, S.R., Banerjee, P., Das, P., and Mukhopadhayay, A., Int. J. Energy Water Res., 2018, vol. 2, pp. 1–13. https://doi.org/10.1007/s42108-018-0001-4

    Article  Google Scholar 

  40. Puszkarewicz, A. and Kaleta, J., Int. J. Environ. Res. Public Health, 2020, vol. 17, no. 16, p. 5969. https://doi.org/10.3390/ijerph17165969

    Article  CAS  PubMed Central  Google Scholar 

  41. Bouiahya, K., Oulguidoum, A., Laghzizil, A., Shalabi, M., and Nunzi, J., Colloids Surf. A: Physicochem. Eng. Asp., 2020, vol. 595, p. 124706. https://doi.org/10.1016/j.colsurfa.2020.124706

    Article  CAS  Google Scholar 

Download references

Funding

The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work through Research Group Project under grant number (R.G.P.1/17/42).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abubakr M. Idris.

Ethics declarations

The authors declare no conflict of interest requiring disclosure in this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El-Zahhar, A.A., Idris, A.M. Synthesis, Characterization, and Application of TiO2–Magnetite/Chitosan Nanocomposite for Adsorptive Removal of Naphthalene from Aqueous Solutions. Pet. Chem. 62, 788–799 (2022). https://doi.org/10.1134/S0965544122010066

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965544122010066

Keywords:

Navigation