Skip to main content
Log in

Direct Non-Oxidative Conversion of Methane over Metal-Containing Zeolites: Main Strategies for Shifting the Thermodynamic Equilibrium (A Review)

  • Published:
Petroleum Chemistry Aims and scope Submit manuscript

Abstract

Natural gas can play a significant role in the long-term transition from fossil fuels to green energy. Methane, the main component of natural gas, is an attractive resource for the co-production of hydrogen and value-added chemicals. One promising approach for valorization of methane is its direct non-oxidative conversion to hydrogen and hydrocarbons. However, in view of the harsh reaction conditions required for the activation of methane, one of the key challenges hindering the commercialization of this process is low stability of the catalyst structure and its active sites. A potential solution is lowering the reaction temperature. From a practical perspective, the reaction temperature cannot be lowered unless the thermodynamic equilibrium is shifted towards the reaction products. Such a shift can provide acceptable levels both of methane conversion and of the yield of valuable products. This review presents a summary of the current approaches to enhancing methane conversion and aromatics yield based on shifting the thermodynamic equilibrium during the conversion of methane to hydrogen and hydrocarbons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. https://www.nature.com/articles/d41586-020-01045-w

  2. Schiffer, Z.J. and Manthiram, K., Joule, 2017, vol. 1, no. 1, pp. 10–14. https://doi.org/10.1016/j.joule.2017.07.008

    Article  Google Scholar 

  3. Layritz, L.S., Dolganova, J., Finkbeiner, M., Luderer, G., Penteado, A.T., Ueckerdt, F., and Repke, J.-U., Appl. Energ., 2021, vol. 296, pp. 117049. https://doi.org/10.1016/j.apenergy.2021.117049

    Article  CAS  Google Scholar 

  4. Bao, J., Yang, G., Yoneyama, Y., and Tsubaki, N., ACS Catal., 2019, vol. 9, no. 4, pp. 3026–3053. https://doi.org/10.1021/acscatal.8b03924

    Article  CAS  Google Scholar 

  5. Tang, P., Zhu, Q., Wu, Z., and Ma, D., Science, 2014, vol. 7, no. 8, pp. 2580–2591. https://doi.org/10.1039/C4EE00604F

    Article  CAS  Google Scholar 

  6. Karakaya, C. and Kee, R.J., Prog. Energ. Combust., 2016, vol. 55, pp. 60–97. https://doi.org/10.1016/j.pecs.2016.04.003

    Article  Google Scholar 

  7. Farrell, B.L., Igenegbai, V.O., and Linic, S., ACS Catal., 2016, vol. 6, no. 7, pp. 4340–4346. https://doi.org/10.1021/acscatal.6b01087

    Article  CAS  Google Scholar 

  8. Zhang, Xi., Kätelhön, A., Sorda, G., Helmin, M., Rose, M., Bardow, A., Madlener, R., Palkovits, R., and Mitsos, A., Energy, 2018, vol. 151, pp. 826–838. https://doi.org/10.1016/j.energy.2018.03.132

    Article  CAS  Google Scholar 

  9. Spivey, J.J. and Hutchings, G., Chem. Soc. Rev., 2014, vol. 43, no. 3, pp. 792–803. https://doi.org/10.1039/C3CS60259A

    Article  CAS  PubMed  Google Scholar 

  10. Menon, U., Rahman, M., and Khatib, S.J., Appl. Catal. A: Gen., 2020, vol. 608, p. 117870. https://doi.org/10.1016/j.apcata.2020.117870

    Article  CAS  Google Scholar 

  11. Galadima, A. and Muraza, O., Catal. Surv. Asia, 2019, vol. 23, no. 3, pp. 149–170. https://doi.org/10.1007/s10563-018-9262-5

    Article  CAS  Google Scholar 

  12. Xiang, Y., Wang, H., Cheng, J., and Matsubu, J., Catal. Sci. Technol., 2018, vol. 8, no. 6, pp. 1500–1516. https://doi.org/10.1039/C7CY01878A

    Article  CAS  Google Scholar 

  13. Sun, K., Ginosar, D.M., He, T., Zhang, Y., Fan, M., and Chen, R., Ind. Eng. Chem. Res., 2018, vol. 57, no. 6, pp. 1768–1789. https://doi.org/10.1021/acs.iecr.7b04707

    Article  CAS  Google Scholar 

  14. Ma, S., Guo, X., Zhao, L., Scott, S., and Bao, X., J. Energy Chem., 2013, vol. 22, no. 1, pp. 1–20. https://doi.org/10.1016/S2095-4956(13)60001-7

    Article  Google Scholar 

  15. Xie, P., Pu, Ti., Nie, A., Hwang, S., Purdy, S.C., Yu, W., Su, D., Miller, J.T., and Wang, Ch., ACS Catal., 2018, vol. 8, no. 5, pp. 4044–4048. https://doi.org/10.1021/acscatal.8b00004

    Article  CAS  Google Scholar 

  16. Wang, L., Tao, L., Xie, M., Xu, G., Huang, J., and Xu, Y., Catal. Lett., 1993, vol. 21, no. 1, pp. 35–41. https://doi.org/10.1007/BF00767368

    Article  CAS  Google Scholar 

  17. Schwach, P., Pan, Xi., and Bao, Xi., Chem. Rev., 2017, vol. 117, no. 13, pp. 8497–8520. https://doi.org/10.1021/acs.chemrev.6b00715

    Article  CAS  PubMed  Google Scholar 

  18. Mosqueira, L. and Fuentes, G.A., Mol. Phys., 2002, vol. 100, no. 19, pp. 3055–3057. https://doi.org/10.1080/00268970210130173

    Article  CAS  Google Scholar 

  19. Zheng, H., Ma, D., Bao, Xi., Zh, J., Hu, J., Kwak, J.Hu., Wang, Y., and Peden, Ch.H.F., J. Am. Chem. Soc., 2008, vol. 130, no. 12, pp. 3722–3723. https://doi.org/10.1021/ja7110916

    Article  CAS  PubMed  Google Scholar 

  20. Kosinov, N., Coumans, F.J.A.G., Li, G., Uslamin, E., Mezari, B., Wijpkema, A.S.G., Pidko, E., and Hensen, E.J.M., J. Catal., 2017, vol. 346, pp. 125–133. https://doi.org/10.1016/j.jcat.2016.12.006

    Article  CAS  Google Scholar 

  21. Vollmer, I., Li, L., Yarulina, I., Kosinov, N., Hensen, E.J., Houben, K., Mance, D., Baldus, M., Gascon, J., and Kapteijn, F., Catal. Sci. Technol., 2018, vol. 8, no. 3, pp. 916–922. https://doi.org/10.1039/C7CY01789H

    Article  CAS  Google Scholar 

  22. Gao, J., Zheng, Y., Jehng, J.-M., Tang, Y., Wachs, I.E., and Podkolzin, S.G., Science, 2015, vol. 348, no. 6235, pp. 686–690. https://doi.org/10.1126/science.aaa7048

    Article  CAS  PubMed  Google Scholar 

  23. Kosinov, N., Wijpkema, A.S.G., Uslamin, E., Rohling, R., Coumans, F.J.A.G., Mezari, B., Parastaev, A., Poryvaev, A.S., Fedin, M.V., Pidko, E.A., and Hensen, E.J.M., Angew. Chem. Int. Ed., 2018, vol. 57, no. 4, pp. 1016–1020. https://doi.org/10.1002/anie.201711098

    Article  CAS  Google Scholar 

  24. Vollmer, I., Linden, B., Ould-Chikh, S., Aguilar-Tapia, A., Yarulina, I., Abou-Hamad, E., Sneider, Y.G., Olivos Suarez, A.I., Hazemann, J.-L., Kapteijn, F., and Gascon, J., Chem. Sci., 2018, vol. 9, no. 21, pp. 4801–4807. https://doi.org/10.1039/C8SC01263F

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Weckhuysen, B.M., Rosynek, M.P., and Lunsford, J.H., Catal. Lett., 1998, vol. 52, pp. 31–36. https://doi.org/10.1023/A:1019094630691

    Article  CAS  Google Scholar 

  26. Tempelman, C.H.L. and Hensen, E.J.M., Appl. Catal. B: Environ., 2015, vols. 176–177, pp. 731–739. https://doi.org/10.1016/j.apcatb.2015.04.052

    Article  CAS  Google Scholar 

  27. Gao, J., Zheng, Y., Fitzgerald, G.B., de Joannis, J.Y., Tang, Y., Wachs, I.E., and Podkolzin, S.G., J. Phys. Chem. C, 2014, vol. 118, no. 9, pp. 4670–4679. https://doi.org/10.1021/jp4106053

    Article  CAS  Google Scholar 

  28. Portilla, M.T., Llopis, F.J., and Martínez, C., Catal. Sci. Technol., 2015, vol. 5, no. 7, pp. 3806–3821. https://doi.org/10.1039/C5CY00356C

    Article  CAS  Google Scholar 

  29. Liu, B.S., Leung, J.W.H., Li, L., Au, C.T., and Cheung, A.S.-C., Chem. Phys. Lett., 2006, vol. 430, no. 1, pp. 210–214. https://doi.org/10.1016/j.cplett.2006.08.131

    Article  CAS  Google Scholar 

  30. Tan, P.L., Leung, Y.L., Lai, S.Y., and Au, C.T., Catal. Lett., 2002, vol. 78, no. 1, pp. 251–258. https://doi.org/10.1023/A:1014956501472

    Article  CAS  Google Scholar 

  31. Wang, L., Ohnishi, R., and Ichikawa, M., J. Catal., 2000, vol. 190, no. 2, pp. 276–283. https://doi.org/10.1006/jcat.1999.2748

    Article  CAS  Google Scholar 

  32. Bai, J., Liu, S., Xie, S., Xu, L., and Lin, L., Catal. Lett., 2003, vol. 90, no. 3, pp. 123–130. https://doi.org/10.1023/B:CATL.0000004104.12763.80

    Article  CAS  Google Scholar 

  33. Liu, Z., Nutt, M.A. , and Iglesia,, E., Catal. Lett., 2002, vol. 81, pp. 271–279. https://doi.org/10.1023/A:1016553828814

    Article  Google Scholar 

  34. Kosinov, N., Coumans, F.J.A.G., Uslamin, E., Kapteijn, F., and Hensen, E.J.M., Angew. Chem. Int. Ed., 2016, vol. 55, no. 48, pp. 15086–15090. https://doi.org/10.1002/anie.201609442

    Article  CAS  Google Scholar 

  35. Naccache, C.M., Mériaudeau, P., Sapaly, G., Van Tiep, L., and Ben Taârit, Y., J. Catal., 2002, vol. 205, no. 1, pp. 217–220. https://doi.org/10.1006/jcat.2001.3376

    Article  CAS  Google Scholar 

  36. Gim, M.Y., Song, C., Kim, T.H., Song, J.H., Kim, D.H., Lee, K.Y., and Song, I.K., Mol. Catal., 2017, vol. 439, pp. 134–142. https://doi.org/10.1016/j.mcat.2017.07.001

    Article  CAS  Google Scholar 

  37. Anunziata, O.A., González Mercado, G.V., and Pierella, L.B., Catal. Lett., 2003, vol. 87, no. 3, pp. 167–171. https://doi.org/10.1023/A:1023533206900

    Article  CAS  Google Scholar 

  38. Jarvis, J., Wong, A., He, P., Li, Q., and Song, H., Fuel, 2018, vol. 223, pp. 211–221. https://doi.org/10.1016/j.fuel.2018.03.045

    Article  CAS  Google Scholar 

  39. Li, Q.Y., He, P., Jarvis, J., Bhattacharya, A., Mao, X.H., Wang, A.G., Bernard, G.M., Michaelis, V.K., Zeng, H.B., Liu, L.J., and Song, H., Appl. Catal. B: Environ., 2018, vol. 236, pp. 13–24. https://doi.org/10.1016/j.apcatb.2018.05.006

    Article  CAS  Google Scholar 

  40. Anunziata, O.A., Eimer, G.A., and Pierella, L.B., Appl. Catal. A: Gen., 2000, vol. 190, no. 1, pp. 169–176. https://doi.org/10.1016/S0926-860X(99)00297-5

    Article  CAS  Google Scholar 

  41. He, P., Jarvis, J., Meng, S.J., Wang, A.G., Kou, S.Y., Gatip R, Yung, M., Liu, L.J., and Song, H., Appl. Catal. B: Environ., 2018, vol. 234, pp. 234–246. https://doi.org/10.1016/j.apcatb.2018.04.034

    Article  CAS  Google Scholar 

  42. He, P., Jarvis, J.S., Meng, S.J., Li, Q.Y., Bernard, G.M., Liu, L.J., Mao, X.H., Jiang, Z., Zeng, H.B., Michaelis, V.K., and Song, H., Appl. Catal. B: Environ., 2019, vol. 250, pp. 99–111. https://doi.org/10.1016/j.apcatb.2019.03.011

    Article  CAS  Google Scholar 

  43. He, P., Gatip, R., Yung, M., Zeng, H., and Song, H., Appl. Catal. B: Environ., 2017, vol. 211, pp. 275–288. https://doi.org/10.1016/j.apcatb.2017.04.052

    Article  CAS  Google Scholar 

  44. Echevsky, G.V., Kodenev, E.G., Kikhtyanin, O.V., and Parmon, V.N., Appl. Catal. A: Gen., 2004, vol. 258, no. 2, pp. 159–171. https://doi.org/10.1016/j.apcata.2003.08.024

    Article  CAS  Google Scholar 

  45. Anunziata, O.A., González Mercado, G., and Pierella, L.B., Catal. Commun., 2004, vol. 5, no. 8, pp. 401–405. https://doi.org/10.1016/j.catcom.2004.04.008

    Article  CAS  Google Scholar 

  46. Li, Q.Y., Zhang, F.Q., Jarvis, J., He, P., Yung, M.M., Wang, A.G., Zhao, K., and Song, H., Fuel, 2018, vol. 219, pp. 331–339. https://doi.org/10.1016/j.fuel.2018.01.104

    Article  CAS  Google Scholar 

  47. Luzgin, M.V., Rogov, V.A., Arzumanov, S.S., Toktarev, A.V., Stepanov, A.G., and Parmon, V.N., Catal., 2009, vol. 144, no. 3, pp. 265–272. https://doi.org/10.1016/j.cattod.2008.08.043

    Article  CAS  Google Scholar 

  48. Pierella, L.B., Eimer, G.A., and Anunziata, O.A., Stud. Surf. Sci. Catal., 1998, vol. 119, pp. 235–240. https://doi.org/10.1023/A:1019019109987

    Article  CAS  Google Scholar 

  49. Anunziata, O.A. and Mercado, G.G., Catal. Lett., 2006, vol. 107, no. 1, pp. 111–116. https://doi.org/10.1007/s10562-005-9738-6

    Article  CAS  Google Scholar 

  50. Luzgin, M.V., Rogov, V.A., Arzumanov, S.S., Toktarev, A.V., Stepanov, A.G., and Parmon, V.N., Angew. Chem., Int. Ed., 2008, vol. 47, pp. 4559–4562. https://doi.org/10.1002/ange.200800317

    Article  CAS  Google Scholar 

  51. Stepanov, A.G., Arzumanov, S.S., and Gabrienko, A.A., Chemistry–Methods, 2021, vol. 1, no. 5, pp. 224–230. https://doi.org/10.1002/cmtd.202100021

    Article  Google Scholar 

  52. Choudhary, V.R., Science, 1997, vol. 275, no. 5304, pp. 1286–1288. https://doi.org/10.1126/science.275.5304.1286

    Article  CAS  PubMed  Google Scholar 

  53. Wang, A., He, P., Yung, M., Zeng, H., Qian, H., and Song, H., Appl. Catal. B: Environ., 2016, vol. 198, pp. 480–492. https://doi.org/10.1016/j.apcatb.2016.06.013

    Article  CAS  Google Scholar 

  54. Liu, Y., Li, D., Wang, T., Liu, Y., Xu, T., and Zhang, Y., ACS Catal., 2016, vol. 6, no. 8, pp. 5366–5370. https://doi.org/10.1021/acscatal.6b01362

    Article  CAS  Google Scholar 

  55. Kosinov, N., Parastaev, A., Wijpkema, A.S.G., Vollmer, I., Gascon, J., Kapteijn, F., and Hensen, E.J.M., ACS Catal., 2017, vol. 7, no. 7, pp. 4485–4487. https://doi.org/10.1021/acscatal.7b00665

    Article  CAS  Google Scholar 

  56. Zhang, Y. and Jiang, H., Chem. Commun., 2018, vol. 54, pp. 10343–10346. https://doi.org/10.1039/C8CC05059G

    Article  CAS  Google Scholar 

  57. Cao, Zh., Jiang, H., Luo, H., Baumann, S., Meulenberg, W.A., Assmann, J., Mleczko, L., Liu, Y., and Caro, J., Angew. Chem. Int. Ed., 2013, vol. 52, no. 51, pp. 13794–13797. https://doi.org/10.1002/anie.201307935

    Article  CAS  Google Scholar 

  58. Fridman, V. and Urbancic, M.A., US Patent 9725380B2, 2017.

  59. Fan, L.-S. and Li, F., Ind. Eng. Chem. Res., 2010, vol. 49, no. 21, pp. 10200–10211. https://doi.org/10.1021/ie1005542

    Article  CAS  Google Scholar 

  60. Hossain, M.M. and de Lasa, H.I., Chem. Eng. Sci., 2008, vol. 63, no. 18, pp. 4433–4451. https://doi.org/10.1016/j.ces.2008.05.028

    Article  CAS  Google Scholar 

  61. Brady, C., Murphy, B., and Xu, B., ACS Catal., 2017, vol. 7, no. 6, pp. 3924–3928. https://doi.org/10.1021/acscatal.7b00879

    Article  CAS  Google Scholar 

  62. Moghtaderi, B., Energ. Fuel, 2012, vol. 26, no. 1, pp. 15–40. https://doi.org/10.1021/ef201303d

    Article  CAS  Google Scholar 

  63. Kumar, A., Song, K., Liu, L., Han, Y., and Bhan, A., Angew. Chem. Int. Ed., 2018, vol. 57, no. 47, pp. 15577– 15582. https://doi.org/10.1002/anie.201809433

    Article  CAS  Google Scholar 

  64. Ockwig, N.W. and Nenoff, T.M., Chem. Rev., 2007, vol. 107, no. 10, pp. 4078–4110. https://doi.org/10.1021/cr0501792

    Article  CAS  PubMed  Google Scholar 

  65. Adhikari, S. and Fernando, S., Ind. Eng. Chem. Res., 2006, vol. 45, no. 3, pp. 875–881. https://doi.org/10.1021/ie050644l

    Article  CAS  Google Scholar 

  66. Liu, Zh., Li, L., and Iglesia, E., Catal. Lett., 2002, vol. 82, nos. 3–4, pp. 175–180. https://doi.org/10.1023/A:1020510810548

    Article  CAS  Google Scholar 

  67. Li, L., Borry, R.W., and Iglesia, E., Chem. Eng. Sci., 2002, vol. 57, no. 21, pp. 4595–4604. https://doi.org/10.1016/S0009-2509(02)00314-7

    Article  CAS  Google Scholar 

  68. Borry, R.W., Lu, E.C., Kim, Y.-H., and Iglesia, E., Stud. Surf. Sci. Catal., 1998, vol. 119, pp. 403–410. https://doi.org/10.1016/S0167-2991(98)80465-5

    Article  CAS  Google Scholar 

  69. Xue, J., Chen, Y., Wei, Y., Feldhoff, A., Wang, H., and Caro, J., ACS Catal., 2016, vol. 6, no. 4, pp. 2448–2451. https://doi.org/10.1021/acscatal.6b00004

    Article  CAS  Google Scholar 

  70. Guo, Xi., Fang, Gu., Li, G., Ma, H., Fan, H., Yu, L., Ma, Ch., Wu, Xi., Deng, D., Wei, M., Tan, D., Si, R., Zhang, S., Li, J., Sun, L., Tang, Z., Pan, Xi., and Bao, Xi., Science, 2014, vol. 344, no. 6184, pp. 616–619. https://doi.org/10.1126/science.1253150

    Article  CAS  PubMed  Google Scholar 

  71. Sakbodin, M., Wu, Yi., Oh, S.Ch., Wachsman, E., and Liu, D., Angew. Chem. Int. Ed., 2016, vol. 55, pp. 16149–16152. https://doi.org/10.1002/anie.201609991

    Article  CAS  Google Scholar 

  72. Kinage, A.K., Ohnishi, R., and Ichikawa, M., Catal. Lett., 2003, vol. 88, pp. 199–202. https://doi.org/10.1023/A:1024022124804

    Article  CAS  Google Scholar 

  73. Larachi, F., Oudghiri-Hassani, H., Iliuta, M.C., Grandjean, B.P.A., and McBreen, P.H., Catal. Lett., 2002, vol. 84, pp. 183–192. https://doi.org/10.1023/A:1021475819517

    Article  CAS  Google Scholar 

  74. Rival, O., Grandjean, B.P.A., Guy, Ch., Sayari, A., and Larachi, F., Ind. Eng. Chem. Res., 2001, vol. 40, no. 10, pp. 2212–2219. https://doi.org/10.1021/ie001089k

    Article  CAS  Google Scholar 

  75. Iliuta, M.C., Grandjean, B.P.A., and Larachi, F., Ind. Eng. Chem. Res., 2003, vol. 42, no. 2, pp. 323–330. https://doi.org/10.1021/ie980394r

    Article  CAS  Google Scholar 

  76. Iliuta, M.C., Larachi, F., Grandjean, B.P.A., Iliuta, I., and Sayari, A., Ind. Eng. Chem. Res., 2002, vol. 41, no. 10, pp. 2371–2378. https://doi.org/10.1021/ie010977s

    Article  CAS  Google Scholar 

  77. Natesakhawat, S., Means, N.C., Howard, B.H., Smith, M., Abdelsayed, V., Baltrus, J.P., Cheng, Y., Lekse, J.W., Link, D., and Morreale, B.D., Catal. Sci. Technol., 2015, vol. 5, pp. 5023–5036. https://doi.org/10.1039/C5CY00934K

    Article  CAS  Google Scholar 

  78. Kinage, A.K., Ohnishi, R., and Ichikawa, M., Catal. Lett., 2003, vol. 88, no. 3, pp. 199–202. https://doi.org/10.1023/A:1024022124804

    Article  CAS  Google Scholar 

  79. Deibert, W., Ivanova, M.E., Baumann, S., Guillon, O., and Meulenberg, W.A., J. Membrane Sci., 2017, vol. 543, pp. 79–97. https://doi.org/10.1016/j.memsci.2017.08.016

    Article  CAS  Google Scholar 

  80. Morejudo, S.H., Zanón, R., Escolástico, S., YusteTirados, I., Malerød-Fjeld, H., Vestre, P.K., Coors, W.G., Martínez, A., Norby, T., Serra, J.M., and Kjølseth, C., Science, 2016, vol. 353, no. 6299, pp. 563–566. https://doi.org/10.1126/science.aag0274

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was carried out within the State Programm of TIPS RAS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Konnov.

Ethics declarations

The authors declare no conflict of interest requiring disclosure in this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Konnov, S.V. Direct Non-Oxidative Conversion of Methane over Metal-Containing Zeolites: Main Strategies for Shifting the Thermodynamic Equilibrium (A Review). Pet. Chem. 62, 280–290 (2022). https://doi.org/10.1134/S0965544122010017

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965544122010017

Keywords:

Navigation