Skip to main content
Log in

Application of Supercritical Fluid Technologies in Chemical and Petrochemical Industries (Review)

  • Published:
Petroleum Chemistry Aims and scope Submit manuscript

Abstract

The review is devoted to studying the possibilities of using supercritical fluids as a reaction medium in the chemical and petrochemical industries, which will solve the urgent problem of replacing traditional toxic, explosive, and fire hazardous organic solvents with environmentally friendly “green” solvents. A comparative analysis of scientific and technological achievements in the application of supercritical fluid technologies (SCF technologies) in widely used petrochemical processes, such as oxidation, hydrogenation, hydroformylation, polymerization, metathesis, and other SCF technologies, have a commercial focus; they have a number of potential competitive advantages and have been implemented or planned for industrial implementation in the near future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. C. Capello, U. Fischer, and K. Hungerbuhler, Green Chem. 9, 927 (2007).

    Article  CAS  Google Scholar 

  2. C. Cagniard de la Tour, Ann. Chim. Phys. 21, 127 (1822).

    Google Scholar 

  3. K. Zosel, Angew. Chem., Int. Ed. Engl. 17, 702 (1978).

    Article  Google Scholar 

  4. P. Munshi and S. Bhaduri, Curr. Sci. 97, 63 (2009).

    CAS  Google Scholar 

  5. F. Gumerov and R. Yarullin, Chem. J., No. 10, 26 (2008).

  6. P. G. Jessor, S. M. Mercer, and D. J. Heldebrant, Energy Environ. Sci. 5, 7240 (2012).

    Article  CAS  Google Scholar 

  7. S. Bell, Process Economics Program, Rep. No. 269: Supercritical CO2: A Green Solvent (SRI Consulting, Menlo Park, CA, 2009).

  8. S. Z. Al Ghafri, G. C. Maitland, and J. P. M. Trusler, Fluid Phase Equilib. 365, 20 (2014).

    Article  CAS  Google Scholar 

  9. A. Burant, G. V. Lowry, and A. K. Karamalidis, Environ. Sci. Technol. 47, 37 (2013).

    Article  CAS  PubMed  Google Scholar 

  10. T. Q. M. D. Tran, P. Neogi, and B. Bai, Soc. Pet. Eng. J. 22, 539 (2017).

    CAS  Google Scholar 

  11. S. I. Im, S. Shin, J. W. Park, et al., Chem. Eng. J. 31, 389 (2018).

    Article  CAS  Google Scholar 

  12. S. M. Seyyedsar, S. A. Farzaneh, and M. Sohrabi, J. Nat. Gas Sci. Eng. 34, 1205 (2016).

    Article  CAS  Google Scholar 

  13. M. Marufuzzaman and A. Henni, Can. J. Chem. Eng. 93, 553 (2015).

    Article  CAS  Google Scholar 

  14. S. Rudyk, Energy Fuels 28, 4714 (2014).

    Article  CAS  Google Scholar 

  15. R. G. Bitencourt, A. M. Palma, J. A. P. Coutinho, et al., Fluid Phase Equilib. 482, 1 (2018).

    Article  CAS  Google Scholar 

  16. L. Devetta, A. Giovanzana, P. Canu, et al., Catal. Today 48, 337 (1999).

    Article  CAS  Google Scholar 

  17. M. G. Hitzler, F. R. Smail, S. K. Ross, and M. Poliakoff, Org. Process Res. Dev. 2, 137 (1998).

    Article  CAS  Google Scholar 

  18. M. G. Hitzler and M. Poliakoff, Chem. Commun., No. 17, 1667 (1997).

  19. R. O. Caniaz, S. Simsek, S. Arca, et al., J. Supercrit. Fluids 133, 674 (2018).

    Article  CAS  Google Scholar 

  20. Q. Y. Zhao, L. J. Guo, Z. J. Huang, et al., Energy Fuels 32, 1685 (2018).

    Article  CAS  Google Scholar 

  21. J. Liu, Y. Xing, Y. X. Chen, et al., Ind. Eng. Chem. Res. 57, 867 (2018).

    Article  CAS  Google Scholar 

  22. F. J. Campanario and F. J. G. Ortiz, Energy Convers. Manage. 154, 591 (2017).

    Article  CAS  Google Scholar 

  23. K. Wang, L. Y. Bao, Y. Xing, et al., Ind. Eng. Chem. Res. 56, 12920 (2017).

    Article  CAS  Google Scholar 

  24. O. N. Fedyaeva, V. R. Antipenko, and A. A. Vostrikov, J. Supercrit. Fluids 126, 55 (2017).

    Article  CAS  Google Scholar 

  25. B. M. da Silva Pinho, Specific properties of supercritical fluids for fast and exothermic reactive systems, PhD Thesis (Bordeaux, 2015).

  26. G. Franciò, U. Hintermair, and W. Leitner, Philos. Trans. R. Soc. A 28, 373 (2015).

    Google Scholar 

  27. K. Gandhi, S. Arora, and A. Kumar, Int. J. Chem. Stud. 5, 336 (2017).

    CAS  Google Scholar 

  28. S. D. Manjare and K. Dhingra, Mater. Sci. Energy Technol. 2, 463 (2019).

    Google Scholar 

  29. Supercritical Fluid Technology in Materials Science and Engineering: Syntheses, Properties and Applications, Ed. by Y.-P. Sun (Marcel Dekker, New York, 2002).

    Google Scholar 

  30. Clean Technology Group, Hydrogenation in supercritical CO2. www.nottingham.ac.uk/supercritical/beta/hydrogenation.html

  31. P. Licence, J. Ke, M. Sokolova, et al., Green Chem. 5, 99 (2003).

    Article  CAS  Google Scholar 

  32. S. K. Ross, N. J. Meehan, M. Poliakoff, and D. D. N. Cater, EP Patent No. 1373166 (2004).

  33. J. R. Hyde, B. Walsh, J. Singh, and M. Poliakoff, Green Chem. 7, 357 (2005).

    Article  CAS  Google Scholar 

  34. J. R. Hyde and M. Poliakoff, Chem. Commun., No. 13, 1482 (2004).

  35. W. Ehrfeld, V. Hessel, and H. Loewe, Microreactors: New Technology for Modern Chemistry (Wiley–VCH, Weinheim, 2000).

    Book  Google Scholar 

  36. J. Kobayashi, Y. Mori, and S. Kobayashi, Chem. Commun. 28, 2567 (2005).

    Article  CAS  Google Scholar 

  37. P. G. Jessop, The Handbook of Homogeneous Hydrogenation (Wiley–VCH, Weinheim, 2007).

    Google Scholar 

  38. D. Preti, C. Resta, S. Squarcialupi, and G. Fachinetti, Angew. Chem., Int. Ed. Engl. 50 (2011).

  39. T. Schaub, R. Paciello, K.-D. Mohl, et al., WO Patent No. 2010149507 (2010).

  40. Z. Zhang, S. Hu, J. Song, et al., ChemSusChem 2, 234 (2009).

    Article  CAS  PubMed  Google Scholar 

  41. Y. Yasaka, C. Wakai, N. Matubayasi, and M. Nakahar, J. Phys. Chem. A 114, 3510 (2010).

    Article  CAS  PubMed  Google Scholar 

  42. U. Hintermair, S. Wesselbaum, and W. Leitner, WO Patent No. 2012095345 (2012).

  43. S. Wesselbaum, U. Hintermair, and W. Leitner, Angew. Chem., Int. Ed. Engl. 51, 8585 (2012).

    Article  CAS  Google Scholar 

  44. E. P. Martins, D. A. G. Aranda, F. L. P. Pessoa, and J. L. Zotin, Braz. J. Chem. Eng. 17, 361 (2000).

    Article  CAS  Google Scholar 

  45. M. Burgener, D. Ferri, J. D. Grunwaldt, et al., J. Phys. Chem. B 109, 16794 (2005).

    Article  CAS  PubMed  Google Scholar 

  46. F. Zhao, R. Zhang, M. Chatterjee, and Y. Ikushima, Adv. Synth. Catal. 346, 661 (2004).

    Article  CAS  Google Scholar 

  47. C. Moreno-Marrodan, F. Liguori, and P. Barbaro, Beilstein J. Org. Chem. 20, 734 (2017).

    Article  CAS  Google Scholar 

  48. F. Yilmaz, Anadolu Univ. J. Sci. Technol., A 19, 546 (2018).

  49. M. F. Sellin, I. Bach, J. M. Webster, et al., J. Chem. Soc., Dalton Trans., 4569 (2002).

  50. R. Franke, D. Selent, and A. Börner, Chem. Rev. 112, 5675 (2012).

    Article  CAS  PubMed  Google Scholar 

  51. K. Schwirten, R. Kummer, and W. Richter, US Patent No. 4568653 (1986).

  52. J. Ke, B. Han, M. W. George, et al., J. Am. Chem. Soc. 123, 3661 (2001).

    Article  CAS  PubMed  Google Scholar 

  53. C. M. Gordon and W. Leitner, Catalyst Separation and Recycling (Springer, Dordrecht, 2006).

    Google Scholar 

  54. T. J. Koch, S. L. Desset, and W. Leitner, Green Chem. 12, 1719 (2010).

    Article  CAS  Google Scholar 

  55. J. W. Rathke, R. J. Klingler, and T. R. Krause, Organometallics 10, 1350 (1991).

    Article  CAS  Google Scholar 

  56. A. Börner and R. Franke, Hydroformylation: Fundamentals, Processes, and Applications in Organic Synthesis (Wiley–VCH, Weinheim, 2016).

    Book  Google Scholar 

  57. C. T. Estorach, A. Orejon, and A. M. Masdeu-Bulto, Green Chem. 10, 545 (2008).

    Article  CAS  Google Scholar 

  58. N. J. Meehan, A. J. Sandee, J. N. H. Reek, et al., Chem. Commun., 1497 (2000).

  59. D. Koch and W. Leitner, J. Am. Chem. Soc. 120, 13398 (1998).

    Article  CAS  Google Scholar 

  60. P. B. Webb, M. F. Sellin, T. E. Kunene, et al., J. Am. Chem. Soc. 125, 15577 (2003).

    Article  CAS  PubMed  Google Scholar 

  61. O. Hemminger, A. Marteel, M. R. Mason, and J. A. Davies, Green Chem. 5, 507 (2002).

    Article  CAS  Google Scholar 

  62. A. Fürstner, L. Ackermann, K. Beck, et al., J. Am. Chem. Soc. 123, 9000 (2001).

    Article  PubMed  CAS  Google Scholar 

  63. M. Selva, A. Perosa, M. Fabris, and P. Canton, Green Chem. 11, 229 (2009).

    Article  CAS  Google Scholar 

  64. F. Michalek, D. Madge, J. Rühe, and W. Bannwarth, Eur. J. Org. Chem., No. 3, 577 (2006).

  65. S. G. Kazarian, Polym. Sci., Ser. C 42, 78 (2000).

    Google Scholar 

  66. P. G. Jessop and W. Leitner, Chemical Synthesis Using Supercritical Fluids (Wiley–VCH, Weinheim, 1999).

    Book  Google Scholar 

  67. A. I. Cooper, J. Mater. Chem. 10, 207 (2000).

    Article  CAS  Google Scholar 

  68. B. Hojjati and P. A. Charpentier, Polymer 51, 5345 (2010).

    Article  CAS  Google Scholar 

  69. I. A. Makaryan, A. Yu. Kostin, and I. V. Sedov, Sverkhkrit. Flyuidy: Teor. Prakt. 12 (3), 50 (2017).

    Google Scholar 

  70. M. Igbal, Ch. Vensen, X. Qian, and F. Picchion, Polymers 10, 1285 (2018).

    Article  CAS  Google Scholar 

  71. C. B. Park, N. P. Suh, and D. F. Baldwin, US Patent No. 6051174 (2000).

  72. E. J. Beckman, Environ. Sci. Technol. 37, 5289 (2003).

    Article  CAS  PubMed  Google Scholar 

  73. Z. K. Lopez-Castillo, S. N. V. K. Aki, M. A. Stadtherr, and J. F. Brennecke, Ind. Eng. Chem. Res. 45, 5351 (2006).

    Article  CAS  Google Scholar 

  74. E. Sahle-Demessie, M. A. Gonzalez, J. Enriquez, and Q. Zhao, Ind. Eng. Chem. Res. 39, 4858 (2000).

    Article  CAS  Google Scholar 

  75. J. B. Dunn, D. I. Urquhart, and P. E. Savage, Adv. Synth. Catal. 344, 385 (2002).

    Article  CAS  Google Scholar 

  76. P. Grumett, Platinum Met. Rev. 47, 163 (2003).

    CAS  Google Scholar 

  77. D. S. Kim, Y. H. Shin, and Y.-W. Lee, Chem. Eng. Commun. 202, 78 (2015).

    Article  CAS  Google Scholar 

Download references

Funding

This work was carried out as part of the Program of Fundamental Scientific Research of State Academies of Sciences for 2013–2020, topic code 0089-2018-0018.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. A. Makaryan.

Ethics declarations

I.V. Sedov is Deputy Editor-in-Chief of the Neftekhimiya (Petroleum Chemistry) journal.

Additional information

Translated by V. Avdeeva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Makaryan, I.A., Kostin, A.Y. & Sedov, I.V. Application of Supercritical Fluid Technologies in Chemical and Petrochemical Industries (Review). Pet. Chem. 60, 244–254 (2020). https://doi.org/10.1134/S0965544120030135

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965544120030135

Keywords:

Navigation