Skip to main content
Log in

Constructing Solutions of Cauchy Type Integral Equations by Using Four Kinds of Basis

  • PARTIAL DIFFERENTIAL EQUATIONS
  • Published:
Computational Mathematics and Mathematical Physics Aims and scope Submit manuscript

Abstract

We have four kinds of solutions for Cauchy type integral equations: by expanding on known functions and using the Maclaurin series, we can convert these four kinds of solutions into linear combinations of some elements that are basis of these solutions. Using these bases gives exact solutions for polynomials and, for some other functions, a high-accuracy approximate solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

RESEARCH DATA POLICY AND DATA AVAILABILITY STATEMENTS

The datasets generated during or analyzed during the current study are available from the corresponding author on reasonable request.

REFERENCES

  1. A. Chakrabarti and G. V. Berghe, “Approximate solution of singular integral equations,” Appl. Math. Lett. 17, 553–559 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  2. C. Dagnino and P. Lamberti, “Numerical evaluation of Cauchy principal value integrals based on local spline approximation operators,” J. Comput. Appl. Math. 76, 231–238 (1996).

    Article  MathSciNet  MATH  Google Scholar 

  3. C. Dagnino and E. Santi, “On the convergence of spline product quadratures for Cauchy principal value integrals,” J. Comput. Appl. Math. 36, 181–187 (1991).

    Article  MathSciNet  MATH  Google Scholar 

  4. C. Dagnino and E. Santi, “Spline product quadrature rules for Cauchy singular integrals,” J. Comput. Appl. Math. 33, 133–140 (1990).

    Article  MathSciNet  MATH  Google Scholar 

  5. K. Diethelm, “A method for the practical evaluation of the Hilbert transform on the real line,” J. Comput. Appl. Math. 112, 45–53 (1999).

    Article  MathSciNet  MATH  Google Scholar 

  6. F. D. Gakhov, Boundary Value Problems (Pergamon, London, 1966).

    Book  MATH  Google Scholar 

  7. M. I. Israilov, “Approximate-analytical solution of singular integral equations of first kind using quadrature formula,” Numerical Integration and Adjacent Problems: Collection of Articles of Academy Science of Republic of Uzbekistan Press (FAN, Tashkent, 1990), pp. 7–23 [in Russian].

    Google Scholar 

  8. K. Maleknejad and A. Arzhang, “Numerical solution of the Fredholm singular integro-differential equation with Cauchy kernel by using Taylor-series expansion and Galerkin method,” Appl. Math. Comput. 182, 888–897 (2006).

    MathSciNet  MATH  Google Scholar 

  9. S. Mondal and B. N. Mandal, “Solution of singular integral equations of the first kind with Cauchy kernel,” Commun. Adv. Math. Sci. 2 (1), 69–74 (2019).

    Article  Google Scholar 

  10. N. I. Muskhelishvili, Singular Integral Equations (Noordhoff, Groningen, 1953).

    MATH  Google Scholar 

  11. S. G. Samko, “Hypersingular integrals and their applications” in Analytical Methods and Special Functions (Gordon & Breach, New York, 2000), Vol. 5.

    Google Scholar 

  12. A. Seifi, “Numerical solution of certain Cauchy singular integral equations using a collocation scheme,” Adv. Differ. Equations 537 (2020). https://doi.org/10.1186/s13662-020-02996-0

  13. A. Seifi, T. Lotfi, T. Allahviranloo, et al., “An effective collocation technique to solve the singular Fredholm integral equations with Cauchy kernel,” Adv. Differ. Equations 280 (2017). https://doi.org/10.1186/s13662-017-1339-3

Download references

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. Yaghobifar or F. Hosseini Shekarabi.

Ethics declarations

The authors declare that they have no conflicts of interest.

APPENDIX

APPENDIX

List of some \({{I}_{n}}(x)\) are as below:

$${{I}_{0}}(x) = 0.$$
$${{I}_{1}}(x) = - \pi .$$
$${{I}_{2}}(x) = - \pi x.$$
$${{I}_{3}}(x) = - \pi \left[ {{{x}^{2}} + \frac{1}{4}\left( {\begin{array}{*{20}{c}} 2 \\ 1 \end{array}} \right)} \right].$$
$${{I}_{4}}(x) = - \pi \left[ {{{x}^{3}} + \frac{1}{4}\left( {\begin{array}{*{20}{c}} 2 \\ 1 \end{array}} \right)x} \right].$$
$${{I}_{5}}(x) = - \pi \left[ {{{x}^{4}} + \frac{1}{4}\left( {\begin{array}{*{20}{c}} 2 \\ 1 \end{array}} \right){{x}^{2}} + \frac{1}{{{{4}^{2}}}}\left( {\begin{array}{*{20}{c}} 4 \\ 2 \end{array}} \right)} \right].$$
$${{I}_{6}}(x) = - \pi \left[ {{{x}^{5}} + \frac{1}{4}\left( {\begin{array}{*{20}{c}} 2 \\ 1 \end{array}} \right){{x}^{3}} + \frac{1}{{{{4}^{2}}}}\left( {\begin{array}{*{20}{c}} 4 \\ 2 \end{array}} \right)x} \right].$$
$${{I}_{7}}(x) = - \pi \left[ {{{x}^{6}} + \frac{1}{4}\left( {\begin{array}{*{20}{c}} 2 \\ 1 \end{array}} \right){{x}^{4}} + \frac{1}{{{{4}^{2}}}}\left( {\begin{array}{*{20}{c}} 4 \\ 2 \end{array}} \right){{x}^{2}} + \frac{1}{{{{4}^{3}}}}\left( {\begin{array}{*{20}{c}} 6 \\ 3 \end{array}} \right)} \right].$$
$${{I}_{8}}(x) = - \pi \left[ {{{x}^{7}} + \frac{1}{4}\left( {\begin{array}{*{20}{c}} 2 \\ 1 \end{array}} \right){{x}^{5}} + \frac{1}{{{{4}^{2}}}}\left( {\begin{array}{*{20}{c}} 4 \\ 2 \end{array}} \right){{x}^{3}} + \frac{1}{{{{4}^{3}}}}\left( {\begin{array}{*{20}{c}} 6 \\ 3 \end{array}} \right)x} \right].$$
$${{I}_{9}}(x) = - \pi \left[ {{{x}^{8}} + \frac{1}{4}\left( {\begin{array}{*{20}{c}} 2 \\ 1 \end{array}} \right){{x}^{6}} + \frac{1}{{{{4}^{2}}}}\left( {\begin{array}{*{20}{c}} 4 \\ 2 \end{array}} \right){{x}^{4}} + \frac{1}{{{{4}^{3}}}}\left( {\begin{array}{*{20}{c}} 6 \\ 3 \end{array}} \right){{x}^{2}} + \frac{1}{{{{4}^{4}}}}\left( {\begin{array}{*{20}{c}} 8 \\ 4 \end{array}} \right)} \right].$$
$${{I}_{{10}}}(x) = - \pi \left[ {{{x}^{9}} + \frac{1}{4}\left( {\begin{array}{*{20}{c}} 2 \\ 1 \end{array}} \right){{x}^{7}} + \frac{1}{{{{4}^{2}}}}\left( {\begin{array}{*{20}{c}} 4 \\ 2 \end{array}} \right){{x}^{5}} + \frac{1}{{{{4}^{3}}}}\left( {\begin{array}{*{20}{c}} 6 \\ 3 \end{array}} \right){{x}^{3}} + \frac{1}{{{{4}^{4}}}}\left( {\begin{array}{*{20}{c}} 8 \\ 4 \end{array}} \right)x} \right].$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yaghobifar, M., Shekarabi, F.H. Constructing Solutions of Cauchy Type Integral Equations by Using Four Kinds of Basis. Comput. Math. and Math. Phys. 63, 1671–1680 (2023). https://doi.org/10.1134/S0965542523090142

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965542523090142

Keywords:

Navigation