Skip to main content
Log in

Direct Statistical Modeling of HIV-1 Infection Based on a Non-Markovian Stochastic Model

  • ORDINARY DIFFERENTIAL EQUATIONS
  • Published:
Computational Mathematics and Mathematical Physics Aims and scope Submit manuscript

Abstract

An approach to the numerical modeling of the dynamics of HIV-1 infection based on a non-Markovian stochastic model is presented. In the model, the population dynamics of cells and viral particles are described taking into account the prehistory of their development and transitions between two compartments. An algorithm for direct statistical modeling of the dynamics of the studied populations is developed. Results obtained by studying special cases of the constructed model, including its deterministic analogue, and published clinical data are used for specifying the details of numerical experiments. The eradication probability of HIV-1 infection and the dynamics of typical realizations of population sizes are examined in relation to the initial number of virus particles and parameters of the model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. P. W. Nelson and A. S. Perelson, “Mathematical analysis of delay differential equation models of HIV-1 infection,” Math. BioSci. 179, 73 (2002).

    Article  MathSciNet  Google Scholar 

  2. H. T. Banks and D. M. Bortz, “Parameter sensitivity methodology in the context of HIV delay equation models,” J. Math. Biol. 50, 607 (2005).

    Article  MathSciNet  Google Scholar 

  3. K. A. Pawelek, S. Liu, F. Pahlevani, and L. Rong, “A model of HIV-1 infection with two time delays: Mathematical analysis and comparison with patient data,” Math. BioSci. 235, 98 (2012).

    Article  MathSciNet  Google Scholar 

  4. S. Nakaoka, I. Shingo, and K. Sato, “Dynamics of HIV infection in lymphoid tissue network,” J. Math. Biol. 72, 909 (2016).

    Article  MathSciNet  Google Scholar 

  5. J. Wang, J. Lang, and X. Zou, “Analysis of an age structured HIV infection model with virus-to-cell infection and cell-to-cell transmission,” Nonlinear Anal. Real World Appl. 34, 75 (2017).

    Article  MathSciNet  Google Scholar 

  6. D. Sanchez-Taltavull, A. Vieiro, and T. Alarcon, “Stochastic modelling of the eradication of the HIV-1 infection by stimulation of latently infected cells in patients under highly active anti-retroviral therapy,” J. Math. Biol. 73, 919 (2016).

    Article  MathSciNet  Google Scholar 

  7. R. F. Siliciano and W. C. Greene, “HIV Latency,” Cold Spring Harbor Perspect. Med. 1, a007096 (2011).

    Article  Google Scholar 

  8. W. I. Sundquist and H. G. Kraüsslich, “HIV-1 assembly, budding, and maturation,” Cold Spring Harbor Perspect. Med. 2, a006924 (2012).

    Article  Google Scholar 

  9. G. Bocharov, V. Chereshnev, I. Gainova, S. Bazhan, B. Bachmetyev, J. Argilaguet, J. Martinez, and A. Meyerhans, “Human immunodeficiency virus infection: From biological observations to mechanistic mathematical modeling,” Math. Model. Nat. Phenom. 7, 78 (2012).

    Article  MathSciNet  Google Scholar 

  10. V. A. Chereshnev, G. A. Bocharov, A. V. Kim, S. I. Bazhan, I. A. Gainova, A. N. Krasovskii, N. G. Shmagel’, A. V. Ivanov, M. A. Safronov, and R. M. Tret’yakova, Introduction Modeling and Control of HIV Infection Dynamics (Inst. Komp’yut. Issled., Moscow-Izhevsk, 2016) [in Russian].

    Google Scholar 

  11. S. B. Joseph, R. Swanstrom, A. D. Kashuba, and M. S. Cohen, “Bottlenecks in HIV-1 transmission: Insights from the study of founder viruses,” Nat. Rev. Microbiol. 13 (7), 414 (2015).

    Article  Google Scholar 

  12. J. T. Herbeck, M. Rolland, and Y. Liu, “Demographic processes affect HIV-1 evolution in primary infection before the onset of selective processes,” J. Virol. 85 (15), 7523 (2011).

    Article  Google Scholar 

  13. B. A. Sevast’yanov, Branching Processes (Nauka, Moscow, 1971) [in Russian].

    MATH  Google Scholar 

  14. B. A. Sevast’yanov and A. V. Kalinkin, “Branching processes with interaction of particles,” Dokl. Akad. Nauk SSSR 264 (2), 306 (1982).

    MathSciNet  Google Scholar 

  15. N. V. Pertsev, Preprint No. 107, VTs SO AN SSSR (Computing Center, Siberian Branch, USSR Academy of Sciences, 1984).

  16. G. I. Marchuk, Mathematical Methods in Immunology (Optimization Software, New York, 1983; Nauka, Moscow, 1985).

  17. B. J. Pichugin, N. V. Pertsev, V. A. Topchii, and K. K. Loginov, “Stochastic modeling of age-structured population with time and size dependence of immigration rate,” Russ. J. Numer. Anal. Math. Mod. 33, 289 (2018).

    Article  Google Scholar 

  18. N. V. Pertsev, B. Yu. Pichugin, and K. K. Loginov, “Stochastic analogue of the model of the dynamics of HIV-1 infection described by differential equations with delay,” J. Appl. Ind. Math. 77 (1), 74 (2019).

    MATH  Google Scholar 

  19. K. K. Loginov, N. V. Pertsev, and V. A. Topchii, “Stochastic modeling of compartmental systems with pipes,” Mat. Biol. Bioinf. 14 (1), 188 (2019).

    Article  Google Scholar 

  20. M. A. Marchenko and G. A. Mikhailov, “Parallel realization of statistical simulation and random number generators,” Russ. J. Numer. Anal. Math. Model. 17, 113 (2002).

    Article  MathSciNet  Google Scholar 

  21. M. Marchenko, “PARMONC: A software library for massively parallel stochastic simulation,” in Parallel Computing Technologies, PaCT 2011, Lecture Notes in Computer Science, Ed. by V. Malyshkin (Springer, Berlin, 2011), Vol. 6873, p. 302.

    Google Scholar 

  22. G. A. Mikhailov and A. V. Voitishek, Numerical Statistical Modeling: Monte Carlo Methods (Akademiya, Moscow, 2006) [in Russian].

    Google Scholar 

  23. N. V. Pertsev, “Stability of linear delay differential equations arising in models of living systems,” Sib. Adv. Math. 30 (2), 43–54 (2020).

    Article  Google Scholar 

  24. A. Berman and R. J. Plemmons, Nonnegative Matrices in the Mathematical Sciences (Academic, New York, 1979).

    MATH  Google Scholar 

  25. V. V. Voevodin and Yu. A. Kuznetsov, Matrices and Computations (Nauka, Moscow, 1984).

    MATH  Google Scholar 

  26. M. Rolland, S. Tovanabutra, B. Dearlove, Y. Li, C. L. Owen, and E. Lewitus, “Molecular dating and viral load growth rates suggested that the eclipse phase lasted about a week in HIV-1 infected adults in East Africa and Thailand,” PLoS Pathog. 16 (2), e1008179 (2020).

    Article  Google Scholar 

  27. Cramér, Mathematical Methods of Statistics (Princeton Univ. Press, Princeton, 1946).

    MATH  Google Scholar 

  28. B. F. Haynes, G. M. Shaw, B. Korber, G. Kelsoe, J. Sodroski, B. H. Hahn, P. Borrow, and A. J. McMichael, “HIV-host interactions: Implications for vaccine design,” Cell Host Microbe 19 (3), 292 (2016).

    Article  Google Scholar 

  29. L. Leyre, E. Kroon, C. Vandergeeten, C. Sacdalan, D. J. Colby, S. Buranapraditkun, A. Schuetz, N. Chomchey, M. de Souza, W. Bakeman, R. Fromentin, S. Pinyakorn, S. Akapirat, R. Trichavaroj, S. Chottanapund, S. Manasnayakorn, R. Rerknimitr, P. Wattanaboonyoungcharoen, J. H. Kim, S. Tovanabutra, T. W. Schacker, R. O’Connell, V. G. Valcour, P. Phanuphak, M. L. Robb, N. Michael, L. Trautmann, N. Phanuphak, J. Ananworanich, N. Chomont, and RV254/SEARCH010, RV304/SEARCH013, SEARCH011 study groups, “Abundant HIV-infected cells in blood and tissues are rapidly cleared upon ART initiation during acute HIV infection,” Sci. Transl. Med. 12 (533), eaav3491 (2020).

  30. J. M. Hataye, J. P. Casazza, K. Best, C. J. Liang, T. T. Immonen, D. R. Ambrozak, S. Darko, A. R. Henry, F. Laboune, F. Maldarelli, D. C. Douek, N. W. Hengartner, T. Yamamoto, B. F. Keele, A. S. Perelson, and R. A. Koup, “Principles governing establishment versus collapse of HIV-1 cellular spread,” Cell Host Microbe 26 (6), 748 (2019).

    Article  Google Scholar 

Download references

Funding

Bocharov’s research was supported by the Russian Science Foundation (project no. 18-11-00171) and the Moscow Center for Fundamental and Applied Mathematics (agreement no. 075-15-2019-1624 with the Ministry of Science and Higher Education of the Russian Federation). Pertsev acknowledges the support of the Russian Science Foundation (project no. 18-11-00171), and the work by Loginov and Topchii was performed within the state assignment at the Sobolev Institute of Mathematics of the Siberian Branch of the Russian Academy of Sciences (project no. 0314-2019-0009).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to G. A. Bocharov, K. K. Loginov, N. V. Pertsev or V. A. Topchii.

Additional information

Translated by I. Ruzanova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bocharov, G.A., Loginov, K.K., Pertsev, N.V. et al. Direct Statistical Modeling of HIV-1 Infection Based on a Non-Markovian Stochastic Model. Comput. Math. and Math. Phys. 61, 1229–1251 (2021). https://doi.org/10.1134/S0965542521060026

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965542521060026

Keywords:

Navigation