Skip to main content
Log in

Spectral Analysis of Optimal Disturbances of Stratified Turbulent Couette Flow

  • MATHEMATICAL PHYSICS
  • Published:
Computational Mathematics and Mathematical Physics Aims and scope Submit manuscript

Abstract

For a stratified turbulent Couette flow, the eigenmodes and optimal disturbances of corresponding simplified equations linearized around a steady state are considered. It is shown that the spectrum of these equations is symmetric with respect to the real axis and lies strictly in the left half-plane, i.e., all eigenmodes are stable, and the main part of an optimal disturbance is a linear combination of a large number of modes corresponding to eigenvalues with largest real parts. The number of the most significant modes in this linear combination grows with increasing Reynolds number.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. P. Drobinski, R. Brown, P. Flamant, and J. Pelon, “Evidence of organized large eddies by ground-based Doppler lidar, sonic anemometer, and sodar,” Bound.-Layer Meteor. 88 (3), 343–361 (1988).

    Article  Google Scholar 

  2. A. V. Glazunov, “Numerical simulation of stably stratified turbulent flows over flat and urban surfaces,” Izv. Atm. Ocean. Phys. 50 (3), 326–245 (2014).

    Google Scholar 

  3. A. V. Glazunov, E. V. Mortikov, K. V. Barskov, E. V. Kadantsev, and S. S. Zilitinkevich, “Layered structure of stably stratified turbulent shear flows,” Izv. Atm. Ocean. Phys. 55 (4), 312–323 (2019).

    Article  Google Scholar 

  4. P. P. Sullivan, J. C. Weil, E. G. Patton, H. J. Jonker, and D. V. Mironov, “Turbulent winds and temperature fronts in large-eddy simulations of the stable atmospheric boundary layer,” J. Atmos. Sci. 73 (4), 1815–1840 (2016).

    Article  Google Scholar 

  5. E. V. Mortikov, A. V. Glazunov, and V. N. Lykosov, “Numerical study of plane Couette flow: Turbulence statistics and the structure of pressure-strain correlations,” Russ. J. Numer. Anal. Math. Model. 34 (2), 119–132 (2019).

    Article  MathSciNet  Google Scholar 

  6. D. K. Lilly, “On the instability of Ekman boundary flow,” J. Atmos. Sci. 23 (P), 481–494 (1966).

  7. A. R. Brown, “A secondary flow model for the planetary boundary layer,” J. Atmos. Sci. 27 (5), 742–757 (1970).

    Article  Google Scholar 

  8. A. V. Glazunov, G. V. Zasko, E. V. Mortikov, and Yu. M. Nechepurenko, “Optimal disturbances of stably stratified turbulent Couette flow,” Dokl. Phys. 64 (7), 308–312 (2019).

    Article  Google Scholar 

  9. G. V. Zasko, A. V. Glazunov, E. V. Mortikov, and Yu. M. Nechepurenko, Preprint No. 63, IPM RAN (Keldysh Inst. of Applied Mathematics, Russian Academy of Sciences, Moscow, 2019).

  10. G. V. Zasko, A. V. Glazunov, E. V. Mortikov, and Yu. M. Nechepurenko, “Large-scale structures in stratified turbulent Couette flow and optimal disturbances,” Russ. J. Numer. Anal. Math. Model 35 (2), 37–53 (2020).

    Article  MathSciNet  Google Scholar 

  11. A. V. Boiko, N. V. Klyushnev, and Yu. M. Nechepurenko, Stability of Flow over a Grooved Surface (Keldysh Inst. Appl. Math., Moscow, 2016) [in Russian].

  12. Yu. M. Nechepurenko and M. Sadkane, “A low-rank approximation for computing the matrix exponential norm,” SIAM J. Matrix. Anal. Appl. 32 (2), 349–363 (2011).

    Article  MathSciNet  Google Scholar 

  13. P. J. Schmid and D. S. Henningson, Stability and Transition in Shear Flows (Springer-Verlag, Berlin, 2000).

    MATH  Google Scholar 

  14. V. A. Romanov, “Stability of plane-parallel Couette flow,” Funct. Anal. Appl. 7, 137–146 (1973).

    Article  MathSciNet  Google Scholar 

  15. K. M. Butler and B. F. Farrell, “Optimal perturbations and streak spacing in wall-bounded turbulent shear flow,” Phys. Fluids A: Fluid Dyn. 5 (3), 774–777 (1993).

    Article  Google Scholar 

  16. C. Canuto, M. Y. Hussaini, A. Quarteroni, and T. A. Zang, Spectral Methods: Fundamentals in Single Domains (Springer, Berlin, 2006).

    Book  Google Scholar 

  17. C. Canuto, M. Y. Hussaini, A. Quarteroni, and T. A. Zang, Spectral Methods: Evolution to Complex Geometries and Applications to Fluid Dynamics (Springer, Berlin, 2007).

    Book  Google Scholar 

  18. J. A. C. Weideman and S. C. Reddy, “A MATLAB differentiation matrix suite,” ACM Trans. Math. Software 26 (4), 465–519 (2000).

    Article  MathSciNet  Google Scholar 

  19. Yu. M. Nechepurenko, “On the dimension reduction of linear differential-algebraic control systems,” Dokl. Math. 86 (1), 457–459 (2012).

    Article  MathSciNet  Google Scholar 

  20. G. H. Golub and C. F. van Loan, Matrix Computations (John Hopkins Univ. Press, London, 1991).

    MATH  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to A.V. Glazunov and E.V. Mortikov for providing direct numerical simulation data, showing interest in this work, and participating in helpful discussions of the results.

Funding

This work was supported by the Moscow Center of Fundamental and Applied Mathematics, contract no. 075-15-2019-1624 with the Ministry of Education and Science of the Russian Federation.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to G. V. Zasko or Yu. M. Nechepurenko.

Additional information

Translated by I. Ruzanova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zasko, G.V., Nechepurenko, Y.M. Spectral Analysis of Optimal Disturbances of Stratified Turbulent Couette Flow. Comput. Math. and Math. Phys. 61, 129–141 (2021). https://doi.org/10.1134/S0965542521010103

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965542521010103

Keywords:

Navigation