Skip to main content
Log in

Numerical Study of Hydrothermal Wave Suppression in Thermocapillary Flow Using a Predictive Control Method

  • Published:
Computational Mathematics and Mathematical Physics Aims and scope Submit manuscript

Abstract

Hydrothermal waves in flows driven by thermocapillary and buoyancy effects are suppressed by applying a predictive control method. Hydrothermal waves arise in the manufacturing of crystals, including the “open boat” crystal growth process, and lead to undesirable impurities in crystals. The open boat process is modeled using the two-dimensional unsteady incompressible Navier–Stokes equations under the Boussinesq approximation and the linear approximation of the surface thermocapillary force. The flow is controlled by a spatially and temporally varying heat flux density through the free surface. The heat flux density is determined by a conjugate gradient optimization algorithm. The gradient of the objective function with respect to the heat flux density is found by solving adjoint equations derived from the Navier–Stokes ones in the Boussinesq approximation. Special attention is given to heat flux density distributions over small free-surface areas and to the maximum admissible heat flux density.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. C. Kuhlmann, Thermocapillary Convection in Models of Crystal Growth (Springer, Berlin, 1999).

    Google Scholar 

  2. J. Shiomi, G. Amberg, and H. Alfredsson, “Active control of oscillatory thermocapillary convection,” Phys. Rev. E 64, 031205–1–031205–7 (2001). doi 10.1063/1.1497375

    Article  Google Scholar 

  3. J. Shiomi and G. Amberg, “Active control of a global thermocapillary instability,” Phys. Fluids 14 (9), 1063 (2002).

    Article  MATH  Google Scholar 

  4. J. Shiomi et al., “Feedback control of oscillatory thermocapillary convection in a half-zone liquid bridge,” J. Fluid Mech. 496, 193–211 (2003). doi 10.1017/S0022112003006323

    Article  MATH  Google Scholar 

  5. B. A. Bezuglyi, O. A. Tarasov, and A. A. Fedorets, RF Patent No. 2158898 RU, Tyumen. Gos. Univ. (1999).

  6. A. F. Albu and V. I. Zubov, “Determination of functional gradient in an optimal control problem related to metal solidification,” Comput. Math. Math. Phys. 49 (1), 47–70 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  7. V. N. Popov, “Numerical study of the effect of a surface active agent on convective mass transfer in laser surface melting of metal,” Mat. Mekh. Sploshn. Sredy 5 (3), 253–258 (2012). doi http://dx.doi.org/10.7242/1999-6691/2012.5.3.29

    Google Scholar 

  8. F. Muldoon, “Control of hydrothermal waves in a thermocapillary flow using a gradient-based control strategy,” Int. J. Numer. Methods Fluids 72 (1), 90–118 (2013). doi 10.1002/fld.3735

    Article  MathSciNet  Google Scholar 

  9. V. M. Shevtsova and J. Legros, “Instability in thin layer of liquid confined between rigid walls at different temperatures,” Acta Astronaut. 52, 541–549 (2003).

    Article  Google Scholar 

  10. L. J. Peltier and S. Biringen, “Time-dependent thermocapillary convection in a rectangular cavity: Numerical results for a moderate Prandtl number fluid,” J. Fluid Mech. 257, 339–357 (1993). doi 10.1017/S0022112093003106

    Article  MATH  Google Scholar 

  11. V. I. Polezhaev, A. V. Bune, N. A. Verezub, G. S. Glushko, V. L. Gryaznov, K. G. Dubovik, S. A. Nikitin, A. I. Prostomolotov, A. I. Fedoseev, and S. G. Cherkasov, Mathematical Simulation of Convective Heat and Mass Transfer Based on the Navier–Stokes Equations (Nauka, Moscow, 1987) [in Russian].

    MATH  Google Scholar 

  12. V. I. Polezhaev et al., Convective Processes in Zero Gravity (Nauka, Moscow, 1991) [in Russian].

    Google Scholar 

  13. H. Kuhlmann and S. Albensoeder, “Three-dimensional flow instabilities in a thermocapillary-driven cavity,” Phys. Rev. E 77, 036303–1–036303–15 (2008).

    Article  Google Scholar 

  14. F. Muldoon, “Control of a simplified unsteady film-cooling flow using gradient-based optimization,” AIAA J. 46 (10), 2443–2458 (2008).

    Article  MathSciNet  Google Scholar 

  15. M. B. Giles et al., “Algorithm developments for discrete adjoint methods,” AIAA J. 41 (2), 198–205 (2003). doi 10.2514/2.1961

    Article  Google Scholar 

  16. E. Nielsen, PhD Thesis (Virginia Polytechnic Institute, State University, 1998).

  17. S. Nadarajah and A. Jameson, “Studies of the continuous and discrete adjoint approaches to viscous automatic aerodynamic shape optimization,” 15th Computational Fluid Dynamics Conference, Anaheim, CA, 2001, AIAA-2001-2530 (2001).

    Google Scholar 

  18. E. J. Nielsen, B. Diskin, and N. K. Yamaleev, “Discrete adjoint-based design optimization of unsteady turbulent flows on dynamic unstructured grids,” AIAA-2009-3802 (2009).

    Book  Google Scholar 

  19. A. McNamara, A. Treuille, Z. Popovic, and J. Stam, “Fluid control using the adjoint method,” ACM Trans. Graphics (2004). http://grail.cs.washington.edu/projects/control/fiuidAdjoint.pdf.

    Google Scholar 

  20. Harwell Subroutine Library: A Collection of Fortran Codes for Large Scale Scientific Computation (Numerical Analysis Group, 2007).

  21. T. R. Bewley, P. Moin, and R. Temam, “DNS-based predictive control of turbulence: An optimal benchmark for feedback algorithms,” J. Fluid Mech. 447, 179–225 (2001). doi 10.1017/S0022112001005821

    Article  MathSciNet  MATH  Google Scholar 

  22. J. Nocedal and S. J. Wright, Numerical Optimization (Springer, New York, 1999).

    Book  MATH  Google Scholar 

  23. F. Muldoon, PhD Thesis (Louisiana State University, 2004).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. H. Muldoon.

Additional information

Original Russian Text © F.H. Muldoon, 2018, published in Zhurnal Vychislitel’noi Matematiki i Matematicheskoi Fiziki, 2018, Vol. 58, No. 4, pp. 645–660.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muldoon, F.H. Numerical Study of Hydrothermal Wave Suppression in Thermocapillary Flow Using a Predictive Control Method. Comput. Math. and Math. Phys. 58, 493–507 (2018). https://doi.org/10.1134/S0965542518040127

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965542518040127

Keywords

Navigation