Skip to main content
Log in

Evolution of substrate temperature during nozzle movement under cold spraying conditions

  • Published:
Thermophysics and Aeromechanics Aims and scope

Abstract

Results of a study of the evolution of substrate temperature during nozzle movement under cold spraying conditions are reported. A model for calculating the substrate temperature is proposed and verified. Calculated data for typical ranges of nozzle traverse speed, substrate thickness, and initial substrate temperature encountered in the spraying practice, were obtained. It was shown that there exists an optimum initial substrate temperature at which the variation of temperature in the spray spot proves to be minimal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

c s :

heat capacity of substrate material, J/(kg·K)

h s :

substrate thickness, m

T i,j :

substrate temperature, °C

T sum :

maximum substrate surface temperature, °C

T R :

room temperature, °C

T 0 :

jet stagnation temperature, °C

T 00 :

stagnation temperature in the pre-chamber, °C

u n :

nozzle travel velocity, m/s

z ns :

standoff distance, m

α :

coefficient of heat transfer between the jet and the substrate, W/(m2·K)

α 0 :

heat-transfer coefficient at the jet axis, W/(m2·K)

λ s :

thermal conductivity of substrate, W/(m·K)

ρs:

density of substrate material, kg/m3

χ s :

thermal diffusivity of substrate, m2/s.

References

  1. A.N. Papyrin, V.F. Kosarev, S.V. Klinkov, A.P. Alkhimov, and V.M. Fomin, Cold Spray Technology. Amsterdam, Elsevier Sci., 2007.

    Google Scholar 

  2. V.S. Shikalov, S.V. Klinkov, and V.F. Kosarev, Cold spray deposition of aluminum coating onto an erodible material, Thermophysics and Aeromechanics, 2019, Vol. 26, No. 5, P. 729–737.

    Article  ADS  Google Scholar 

  3. O.I. Lomovsky, D.V. Dudina, V.Yu. Ulianitsky, S.B. Zlobin, V.F. Kosarev, S.V. Klinkov, M.A. Korchagin, D.-H. Know, J.-S. Kim, and Y.-S. Know, Cold and detonation spraying of TiB2-Cu nanocomposites, Materials Sci. Forum, 2007, Vol. 534–536, P. 1371–1376.

    Google Scholar 

  4. J.S. Kim, Y.S. Kwon, O.I. Lomovsky, D.V. Dudina, V.F. Kosarev, S.V. Klinkov, D.H. Kwon, and I. Smurov, Cold spraying of in situ produced TiB2-Cu nanocomposite powders, Composites Sci. and Technology, 2007, Vol. 67, Iss. 11–12, P. 2292–2296.

    Article  Google Scholar 

  5. V.F. Kosarev, S.V. Klinkov, A.A. Sova, and I. Smurov, Deposition of multi-component coatings by cold spray, Surf. Coat. Technol., 2008, Vol. 202, P. 5858–5862.

    Article  Google Scholar 

  6. S.V. Klinkov, V.F. Kosarev, A.A. Sova, and I. Smurov, Calculation of particle parameters for cold spraying of metal-ceramic mixtures, J. Therm. Spray Technol., 2009, Vol. 18, P. 944–956.

    Article  ADS  Google Scholar 

  7. A.A. Sova, V.F. Kosarev, A.N. Papyrin, and I. Smurov, Effect of ceramic particle velocity on cold spray deposition of metal-ceramic coatings, J. Therm. Spray Technol., 2011, Vol. 20, P. 285–291.

    Article  ADS  Google Scholar 

  8. S.V. Klinkov and V.F. Kosarev, Cold spraying activation using an abrasive admixture, J. Therm. Spray Technol., 2012, Vol. 21, P. 1046–1053.

    Article  ADS  Google Scholar 

  9. V.F. Kosarev, A.A. Polukhin, N.S. Ryashin, V.M. Fomin, and V.S. Shikalov, Effect of the powder mixture composition on the deposition coefficient and the properties of Ni + B4C CGDS coatings, Mechanics of Solids, 2017, Vol. 52, No. 4, P. 457–464.

    Article  ADS  Google Scholar 

  10. V.M. Fomin, A.A. Golyshev, V.F. Kosarev, A.G. Malikov, A.M. Orishich, N.S. Ryashin, A.A. Filippov, and V.S. Shikalov, Creation of heterogeneous materials on the basis of B4C and Ni powders by the method of cold spraying deposition with subsequent layer-by-layer laser treatment, J. Appl. Mech. Tech. Phys., 2017, Vol. 58, No. 5, P. 947–955.

    Article  ADS  Google Scholar 

  11. V.M. Fomin, A.A. Golyshev, V.F. Kosarev, A.G. Malikov, A.M. Orishich, and A.A. Filippov, Deposition of cermet coatings on the basis of Ti, Ni, WC, and B4C by cold gas dynamic spraying with subsequent laser irradiation, Physical Mesomechanics, 2019, Vol. 23, No. 4, P. 291–300.

    Article  Google Scholar 

  12. S.V. Klinkov and V.F. Kosarev, Monte Carlo simulation of the cold spray process of mixtures of metal and ceramic powders, Therm. Spray Technol., 2021, Vol. 30, P. 1081–1092.

    Article  ADS  Google Scholar 

  13. S.V. Klinkov, V.F. Kosarev, V.S. Shikalov, and T.M. Vidyuk, Optimization of the method of cold gas spraying of neutron-absorbing (Al + B4C) coatings, to be published in J. Appl. Mech. Tech. Phys., 2021. In press.

  14. A.P. Alkhimov, V.F. Kosarev, and A.N. Papyrin, A method of cold gas dynamic spraying, Soviet Physics Dokl., 1990, Vol. 35, P. 1047–1049.

    ADS  Google Scholar 

  15. S.V. Klinkov and V.F. Kosarev, Measurements of cold spray deposition efficiency, J. Therm. Spray Technol., 2006, Vol. 15, No. 3, P. 364–371.

    Article  ADS  Google Scholar 

  16. S.V. Klinkov, V.F. Kosarev, and V.S. Shikalov, Influence of nozzle velocity and powder feed rate on the coating mass and deposition efficiency in cold spraying, Surf. Coat. Technol., 2019, Vol. 367, P. 231–243.

    Article  Google Scholar 

  17. A.N. Papyrin, A.P. Alkhimov, V.F. Kosarev, and S.V. Klinkov, Experimental study of interaction of supersonic gas jet with a substrate under cold spray process, in: Thermal Spray 2001: New Surfaces for A New Millennium, edited by C.C. Berndt, K.A. Khor, and E. Lugscheider, Pub. ASM Intern., Materials Park, OH, 2001, P. 423–431.

    Google Scholar 

  18. A.P. Alkhimov, S.V. Klinkov, and V.F. Kosarev, The features of cold spray nozzle design, J. Therm. Spray Technol., 2001, Vol. 10, P. 375–381.

    Article  ADS  Google Scholar 

  19. V.F. Kosarev, S.V. Klinkov, A.P. Alkhimov, and A.N. Papyrin, On some aspects of gas dynamics of the cold spray process, J. Therm. Spray Technol., 2003, Vol. 12, P. 265–281.

    Article  ADS  Google Scholar 

  20. V.F. Kosarev, S.V. Klinkov, and A.N. Papyrin, Supersonic jet/substrate interaction in the cold spray process, in: The Cold Spray Materials Deposition Process: Fundamentals and Applications, V.K. Champagne (Ed.), Cambridge, Woodhead Publishing, 2007, P. 178–216.

    Chapter  Google Scholar 

  21. S.V. Klinkov, V.F. Kosarev, and V.N. Zaikovskii, Influence of flow swirling and exit shape of barrel nozzle on cold spraying, J. Therm. Spray Technol., 2011, Vol. 20, P. 837–844.

    Article  ADS  Google Scholar 

  22. A. Sova, S. Klinkov, V. Kosarev, N. Ryashin, and I. Smurov, Preliminary study on deposition of aluminum and copper powders by cold spray micronozzle using helium, Surf. Coat. Technol., 2013, Vol. 220, P. 98–101.

    Article  Google Scholar 

  23. S.V. Klinkov, V.F. Kosarev, and V.N. Zaikovskii, Preliminary study of cold spraying using radial supersonic nozzle, Surface Engng, 2016, Vol. 32, P. 701–706.

    Article  Google Scholar 

  24. S.P. Kiselev, V.P. Kiselev, S.V. Klinkov, V.F. Kosarev, and V.N. Zaikovskii, Study of the gas-particle radial supersonic jet in the cold spraying, Surf. Coat. Technol., 2017, Vol. 313, P. 24–30.

    Article  Google Scholar 

  25. A.P. Alkhimov, S.V. Klinkov, and V.F. Kosarev, The study of the two-phase flow interaction with a heated surface, Thermophysics and Aeromechanics, 1998, Vol. 5, No. 1, P. 59–64.

    Google Scholar 

  26. M. Fukumoto, H. Wada, K. Tanabe, M. Yamada, E. Yamaguchi, A. Niwa, M. Sugimoto, and M. Izawa, Effect of substrate temperature on deposition behavior of copper particles on substrate surface in the cold spray process, J. Therm. Spray Technol., 2007, Vol. 16, P. 643–650.

    Article  ADS  Google Scholar 

  27. S. Rech, A. Trentin, S. Vezzu, J.G. Legoux, E. Irissou, and M. Guagliano, Influence of pre-heated Al 6061 substrate temperature on the residual stresses of multipass Al coatings deposited by cold spray, J. Therm. Spray Technol. 2011. Vol. 20. P. 243–251.

    Article  ADS  Google Scholar 

  28. X.K. Suo, M. Yu, W.Y. Li, M.P. Planche, and H.L. Liao, Effect of substrate preheating on bonding strength of cold-sprayed Mg coatings, J. Therm. Spray Technol., 2012, Vol. 21, P. 1091–1098.

    Article  ADS  Google Scholar 

  29. Sh. Yin, X. Suo, Zh. Guo, H. Liao, and X. Wang, Deposition features of cold sprayed copper particles on preheated substrate, Surf. Coat. Technol., 2015, Vol. 268, P. 252–256.

    Article  Google Scholar 

  30. K.-R. Ernst, J. Braeutigam, F. Gaertner, and T. Klassen, Effect of substrate temperature on cold-gas-sprayed coatings on ceramic substrates, J. Therm. Spray Technol., 2013, Vol. 22, P. 422–432.

    Article  ADS  Google Scholar 

  31. Y. Watanabe, Ch. Yoshida, K. Atsumi, M. Yamada, and M. Fukumoto, Influence of substrate temperature on adhesion strength of cold-sprayed coatings, J. Therm. Spray Technol., 2015, Vol. 24, P. 86–91.

    ADS  Google Scholar 

  32. J.G. Legoux, E. Irissou, and C. Moreau, Effect of substrate temperature on the formation mechanism of cold-sprayed aluminum, zinc and tin coatings, J. Therm. Spray Technol., 2007, Vol. 16, P. 619–626.

    Article  ADS  Google Scholar 

  33. P.C. King, G. Bae, S.H. Zahiri, M. Zahedi, and Ch. Lee, An experimental and finite element study of cold spray copper impact onto two aluminum substrates, J. Therm. Spray Technol., 2010, Vol. 19, P. 620–634.

    Article  ADS  Google Scholar 

  34. Sh. Yin, X. Wang, W. Li, and X. Guo, Examination on substrate preheating process in cold dynamic spraying, J. Therm. Spray Technol., 2011, Vol. 20, P. 852–859.

    Article  ADS  Google Scholar 

  35. W. Li, S. Yin, X. Guo, H. Liao, X. Wang, and C. Coddet, An investigation on temperature distribution within the substrate and nozzle wall in cold spraying by numerical and experimental methods, J. Therm. Spray Technol., 2012, Vol. 21, No. 1, P. 41–48.

    Article  ADS  Google Scholar 

  36. Sh. Yin, X. Wang, W. Li, and Y. Li, Numerical study on the effect of substrate size on the supersonic jet flow and temperature distribution within the substrate in cold spraying, J. Therm. Spray Technol., 2012, Vol. 21, Nos. 3–4, P. 628–635.

    Article  ADS  Google Scholar 

  37. Sh. Yin, Y. Sun, X. Wang, Zh. Guo, and H. Liao, Effect of spray angle on temperature distribution within the metallic substrate in cold spraying, J. Therm. Spray Technol., 2013, Vol. 22, No. 6, P. 983–991.

    Article  ADS  Google Scholar 

  38. A.N. Ryabinin, E. Irissou, A. McDonald, and J.-G. Legoux, Simulation of gas-substrate heat exchange during cold-gas dynamic spraying, Inter. J. Therm. Sci., 2012, Vol. 56, P. 12–18.

    Article  Google Scholar 

  39. A.G. McDonald, A.N. Ryabinin, E. Irissou, and J.-G. Legoux, Gas-substrate heat exchange during cold-gas dynamic spraying, J. Therm. Spray Technol., 2013, Vol. 22, No. 2–3, P. 391–397.

    Article  ADS  Google Scholar 

  40. M. Kulmala and P. Vuoristo, Influence of process conditions in laser-assisted low-pressure cold spraying, Surf. Coat. Technol., 2008, Vol. 202, P. 4503–4508.

    Article  Google Scholar 

  41. Y. Danlos, S. Costil, X. Guo, H. Liao, and C. Coddet, Ablation laser and heating laser combined to cold spraying, Surf. Coat. Technol., 2010, Vol. 205, P. 1055–1059.

    Article  Google Scholar 

  42. R. Lupoi, M. Sparkes, A. Cockburn, and W. O’Neill, High speed titanium coatings by supersonic laser deposition, Mater. Lett., 2011, Vol. 65, P. 3205–3207.

    Article  Google Scholar 

  43. S.H. Zahiri, T.D. Phan, S.H. Masood, and M. Jahedi, Development of holistic three-dimensional models for cold spray supersonic jet, J. Therm. Spray Technol., 2014, Vol. 23, No. 6, P. 919–933.

    Article  ADS  Google Scholar 

  44. Ch. Chen, Y. Xie, Ch. Verdy, R. Huang, H. Liao, Zh. Ren, and S. Deng, Numerical investigation of transient coating build-up and heat transfer in cold spray, Surf. Coat. Technol., 2017, Vol. 326, P. 355–365.

    Article  Google Scholar 

  45. V.S. Shikalov, S.V. Klinkov, and V.F. Kosarev, Effect of gas temperature and nozzle traverse speed on the deposition efficiency in cold spraying, Thermophysics and Aeromechanics, 2021, Vol. 28, No. 1, P. 77–86.

    Article  ADS  Google Scholar 

  46. A.P. Alkhimov, S.V. Klinkov, and V.F. Kosarev, Study of heat exchange of supersonic plane jet with obstacle at gas-dynamic spraying, Thermophysics and Aeromechanics, 2000, Vol. 7, No. 3, P. 375–382.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S. V. Klinkov or V. F. Kosarev.

Additional information

This work was supported by the Russian Foundation for Basic Research (Grant No. 19-08-00538); it was performed using the equipment of the Equipment Sharing Center “Mechanics” (ITAM SB RAS).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Klinkov, S.V., Kosarev, V.F. & Shikalov, V.S. Evolution of substrate temperature during nozzle movement under cold spraying conditions. Thermophys. Aeromech. 28, 533–548 (2021). https://doi.org/10.1134/S0869864321040077

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0869864321040077

Keywords

Navigation