Skip to main content
Log in

Interaction between glow discharge plasma and dust particles

  • Published:
Thermophysics and Aeromechanics Aims and scope

Abstract

The effect of dust particle concentration on gas discharge plasma parameters was studied through development of a self-consistent kinetic model which is based on solving the Boltzmann equation for the electron distribution function. It was shown that an increase in the Havnes parameter causes an increase in the average electric field and ion density, as well as a decrease in the charge of dust particles and electron density in a dust particle cloud. Self-consistent simulations for a wide range of plasma and dust particle parameters produced several scaling laws: these are laws for dust particle potential and electric field as a function of dust particle concentration and radius, and the discharge current density. The simulation results demonstrate that the process of self-consistent accommodation of parameters of dust particles and plasma in condition of particle concentration growth causes a growth in the number of high-energy electrons in plasma, but not to depletion of electron distribution function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P.K. Shukla, A survey of dusty plasma physics, Phys. Plasmas, 2001, Vol. 8, No. 5, P. 1791–1803.

    Article  ADS  Google Scholar 

  2. V.E. Fortov, A.G. Khrapak, S.A. Khrapak, V.E. Molotkov, and O.F. Petrov, Dusty plasmas, Physics-Uspekhi, 2004, Vol. 174, No. 5, P. 447–492.

    Article  ADS  Google Scholar 

  3. O. Ishihara, Complex plasma: Dusts in plasma (Topical review), J. Phys. D: Appl. Phys., 2007, Vol. 40, No. 8, P. R121–R147.

    Article  ADS  Google Scholar 

  4. A. Bouchoule and L. Boufendi, Particle formation and dusty plasma behaviour in argon-silane RF discharge, Plasma Source Sci. Tech., 1993, Vol. 2, P. 204–213.

    Article  ADS  Google Scholar 

  5. J.P. Boeuf, Characteristics of a dusty nonthermal plasma from a particle-in-cell Monte Carlo simulation, Phys. Rev., 1992, Vol. 46, P. 7910–7922.

    Article  ADS  Google Scholar 

  6. I. Denysenko, M.Y. Yu, K. Ostrikov, and A.V. Smolyakov, Spatially averaged model of complexplasma discharge with self-consistent electron energy distribution, Phys. Rev. E, 2004, Vol. 70, P. 046403.1–046403.12.

    Article  ADS  Google Scholar 

  7. K. Ostrikov, I. Denysenko, M.Y. Yu, and S. Xu, Electron energy distribution function in low-pressure complex plasmas, J. Plasma Physics, 2005, Vol. 71,part 2, P. 217–224.

    Article  ADS  Google Scholar 

  8. I. Denysenko, M.Y. Yu, and S. Xu, Effect of plasma nonuniformity on electron energy distribution in a dusty plasma, J. Phys. D: Appl. Phys., 2005, Vol. 38, P. 403–408.

    Article  ADS  Google Scholar 

  9. W.J. Goedheer, M.R. Akdim, and Yu.I. Chutov, Hydrodynamic and kinetic modelling of dust free and dusty radio-frequency discharges, Contrib. Plasma Phys., 2004, Vol. 44, P. 395–4004.

    Article  ADS  Google Scholar 

  10. I.V. Schweigert, A.L. Alexandrov, D.A. Ariskin, F.M. Peeters, I., Stefanović, E. Kovačević, J. Berndt, and J. Winter, Effect of transport of growing nanoparticles on capacitively coupled RF discharge dynamics, Phys. Rev. E, 2008, Vol. 78, P. 026410.1–026410.6.

    Article  ADS  Google Scholar 

  11. F.F. Chen, Electric Probes, in: Plasma Diagnostic Techniques, R. Huddlestone and S. Leonard (Eds.), 1965, Academic Press, New York, P. 113–200.

    Google Scholar 

  12. J.E. Allen, Probe theory — the orbital motion approach, Physica Scripta, 1992, Vol. 45, P. 497–503.

    Article  ADS  Google Scholar 

  13. J. Goree, Ion trapping by a charged dust grain in a plasma, Phys. Rev. Lett., 1992, Vol. 69, No. 2, P. 277–280.

    Article  ADS  Google Scholar 

  14. A.V. Zobnin, A.P. Nefedov, V.A. Sinelshchikov, and V.E. Fortov, On the charge of dust particles in low-pressure gas-discharge plasma, J. Experim. Theor. Phys., 2000, Vol. 118, No. 3, P. 483–487.

    Article  ADS  Google Scholar 

  15. M. Lampe, V. Gavrishchaka, G. Ganguli, and G. Joyce, Effect of trapped ions on shielding of a charged spherical object in a plasma, Phys. Rev. Lett., 2001, Vol. 86, No. 23, P. 5278–5281.

    Article  ADS  Google Scholar 

  16. M. Lampe, R. Goswami, Z. Sternovsky, S. Robertson, V. Gavrishchaka, G. Ganguli, and G. Joyce, Trapped ion effect on shielding, current flow, and charging of a small object in a plasma, Phys. Plasmas, 2003, Vol. 10, No. 5, P. 1500–1513.

    Article  ADS  Google Scholar 

  17. I.H. Hutchinson and L. Patacchini, Computation of the effect of neutral collisions on ion current to a floating sphere in a stationary plasma, Phys. Plasmas, 2007, Vol. 14, No. 1, P. 013505.1–013505.9.

    Article  Google Scholar 

  18. A.V. Zobnin, A.D. Usachev, O.F. Petrov, and V.E. Fortov, Ion current on a small spherical attractive probe in a weakly ionized plasma with ion-neutral collisions (kinetic approach), Phys. Plasmas, 2008, Vol. 15, No. 4, P. 043705.1–043705.6.

    Article  Google Scholar 

  19. G.I. Sukhinin, A.V. Fedoseev, S.N. Antipov, O.F. Petrov, and V.E. Fortov, Trapped ions and the shielding of dust particles in low density non-equilibrium plasma of glow discharge, Phys. Rev. E, 2009, Vol. 79, No. 3, P. 036404.1–036404.9.

    Article  ADS  Google Scholar 

  20. G.I. Sukhinin, A.V. Fedoseev, T.S. Ramazanov, K.N. Dzhumagulova, and R.Zh. Amangaliyeva, Dust particle charge distribution in a stratified glow discharge, J. Phys. D: Appl. Phys., 2007, Vol. 40, P. 7761–7765.

    Article  ADS  Google Scholar 

  21. S. Ratynskaya, S. Khrapak, A. Zobnin, M.H. Thoma, M. Kretschmer, A. Usachev, V. Yaroshenko, R.A. Quinn, G.E. Morfill, O. Petrov, and V. Fortov, Experimental Determination of Dust-Particle Charge in a Discharge Plasma at Elevated Pressures, Phys. Rev. Lett., 2004, Vol. 93, P. 085001.1–085001.4.

    ADS  Google Scholar 

  22. S.A. Khrapak, S.V. Ratynskaya, A.V. Zobnin, A.D. Usachev, V.V. Yaroshenko, M.H. Thoma, M. Kretchmer, H. Höfner, G.E. Morfill, O.F. Petrov, and V.E. Fortov, Particle charge in the bulk of gas discharge, Phys. Rev. E., 2005, Vol. 72, No. 1, P. 016406.1–016406.10.

    Article  ADS  Google Scholar 

  23. S.N. Antipov, E.I. Asinovsky, V.E. Fortov, A.V. Kirillin, V.V. Markovets, O.F. Petrov, and V.I. Platonov, Dust structures in cryogenic gas discharges, Phys. Plasmas, 2007, Vol. 14, P. 090701.1–090701.4.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Fedoseev.

Additional information

This research was financially supported by the Grant from the Ministry for Education and Science obtained in the framework of the Federal objective program “Research and development in top priority directions of developing the Russian scientific-technology complex for years 2007–2013” (SC-16.516.11.6009).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fedoseev, A.V., Sukhinin, G.I., Ramazanov, T.S. et al. Interaction between glow discharge plasma and dust particles. Thermophys. Aeromech. 18, 615–627 (2011). https://doi.org/10.1134/S086986431104010X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S086986431104010X

Key words

Navigation