Skip to main content
Log in

Experimental Modeling of Interaction between Fluorine-Containing Granite Melt and Calcite Marble

  • Published:
Petrology Aims and scope Submit manuscript

Abstract

At 750°C and a pressure of 1 kbar, an experiment was carried out simulating the contact-reaction interaction of calcite and a highly evolved fluorine-containing granite melt. The water content in the system did not exceed 10% of the dry charge mass. The possibility of interaction between magmatic melt and calcite is shown. The experimental products contain a zoned column composed of liquid phases and crystalline minerals. In the apocarbonate part, the newly formed phases are cuspidine, quartz, wollastonite, grossular, and a non-crystalline carbonate–fluoride phase LCF. The mineral assemblages in the zones of the apocarbonate part of the column vary depending on the ratio of CO2 and HF activities. In the silicate part, aluminosilicate glass, alkali feldspar, and plagioclase of variable composition were found. Silicon and fluorine are intensively transferred from the silicate to carbonate part, and a small amount of calcium is transferred in the opposite direction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Alferyeva, Ya.O., Chevychelov, V.Yu., and Novikova, A.S., Experimental study of the crystallization conditions of ongonites of the Ary-Bulak Massif (Eastern Transbaikalia), Petrology, 2022, vol. 30, no. 2, pp. 212–226.

    Article  CAS  Google Scholar 

  2. Antipin, V.S., Andreeva, I.A., Kovalenko, V.I., and Kuznetsov, V.A., Geochemical specifics of ongonites in the Ary-Bulak Massif, eastern Transbaikalia, Petrology, 2009, vol. 17, no. 6, pp. 558–569.

    Article  CAS  Google Scholar 

  3. Badaniana, E.V., Syritso, L.F., Volkova, E.V., et al., Composition of Li–F granite melt and its evolution during the formation of the ore-bearing Orlovka Massif in eastern Transbaikalia, Petrology, 2010, vol. 18, no. 2, pp. 131–157.

    Article  Google Scholar 

  4. Bogomolov, M.A., On calcareous skarns of magmatic stage, Ocherk. Fiz.-khim. Petrol., 1970, vol. 2, pp. 5–14.

    CAS  Google Scholar 

  5. Churikov, V.S., On a type of fracture infill during homogenous ore formation, Sov. Geol., 1956, no. 50, pp. 33–60.

  6. Dolomanova, E.I., On the possible role of liquid immiscibility of silicate melts in ore formation, Ocherki geokhimii endogennykh i gipergennykh protsessov (Essays on the Geochemistry of Endogenous and Supergene Processes), Moscow: Nauka, 1966, pp. 127–151.

    Google Scholar 

  7. Durand, C., Baumgartner, L.P., and Marquer, D., Low melting temperature for calcite at 1000 bars on the join CaCO3–H2O—some geological implications, Terra Nova, 2015, vol. 27, pp. 364–369.

    Article  CAS  Google Scholar 

  8. Fersman, A.E., Pegmatity. Volume 1. Granitnye pegmatity. Izbrannye Trudy (Pegmatites. Volume 1. Selected Papers), Moscow: AN SSSR, 1960, vol. 6.

  9. Floess, D., Baumgartner, L.P., and Vonlanthen, P., An observational and thermodynamic investigation of carbonate partial melting, Earth Planet. Sci. Lett., 2015, vol. 409, pp. 147–156.

    Article  CAS  Google Scholar 

  10. Ganino, C., Arndt, N.T., Chauvel, C., et al., Melting of carbonate wall rocks and formation of the heteregeneous aureole of the Panzhihua intrusion, China, Geosci. Front., 2013, vol. 4, pp. 535–546.

    Article  CAS  Google Scholar 

  11. Gozzi, F., Gaeta, M., Freda, C., et al., Primary magmatic calcite reveals origin from crustal carbonates, Lithos, 2014, vol. 190–191, pp. 191–208.

    Article  Google Scholar 

  12. Gramenitsky, E.N. and Kononov, O.V., Mineral’nye formatsii i petrologiya Tyrnyauzkogo vol’framo-molibdenovogo mestorozhdeniya (Mineral Formations and Petrology of the Tyrnyauz Tungsten–Molybdenum Deposit), Moscow: Infra-M, 2022.

  13. Gramenitsky, E.N., Shchekina, T.I., and Devyatova, V.N., Fazovye otnosheniya vo ftorsoderzhashchikh granitnoi i nefelin-sienitovoi sistemakh i raspredelenie elementov mezhdu fazami (Phase Relations in Fluorine-Bearing Granite and Nepheline–Syenite Systems and Partitioning of Elements Between Phases), Moscow: GEOS, 2005.

  14. Gramenitsky, E.N., Shchekina, T.I., and Alferyeva, Ya.O., Processes of replacement by melt at interaction between refractory materials and industrially produced melts, Petrology, 2018, vol. 26, no. 4, pp. 428–446.

    Article  Google Scholar 

  15. Jutras, P., Macrae, A., Owen, J.V., et al., Carbonate melting and peperite formation at the intrusive contact between large mafic dykes and clastic sediments of the upper Palaeozoic Saint-Jules Formation, New-Carlisle, Quebec, Geol. J., 2006, no. 41, pp. 23–48.

  16. Kalinin, D.V., Eksperimental’nye issledovaniya fiziko-khimicheskikh uslovii skarnirovaniya (Experimental Studies of Physicochemical Conditions of Skarnification), Novosibirsk: Nauka, 1969.

  17. Khitarov, N.I., Lebedev, E.B., and Lebedeva, R.V., Experimental data on the characteristics of formation of wollastonite-bearing skarns, Eksperimental’nye issledovaniya v oblasti glubinnykh protsessov (Experimental Studies of Deep-Seated Processes), Moscow: AN SSSR, 1962, pp. 43–54.

    Google Scholar 

  18. Kogarko, L.N. and Krigman, L.D., Ftor v silikatnykh rasplavakh i magmakh (Fluorine in Silicate Melts and Magmas), Moscow: Nauka, 1981.

  19. Korzhinskii, D.S., Teoriya metasomaticheskoi zonal’nosti (Theory of Metasomatic Zoning), Moscow: Nauka, 1969.

  20. Korzhinskii, M.A., Diopside–wollastonite equilibrium in the chloride supercritical fluid, Geokhimiya, 1985, no. 10, pp. 1430–1440.

  21. Kovalenko, N.I., Eksperimental’noe issledovanie obrazovaniya redkometall’nykh litii-ftoristykh granitov (Experimental Study of the Formation of Rare-Metal Lithium–Fluoride Granites), Moscow: Nauka, 1979.

  22. Kovalenko, V.I. and Kovalenko, N.I., Ongonity—subvulkanicheskie analogi redkometal’nykh litii-ftoristykh granitov (Ongonites as Subvolcanic Analogues of Rare-Metal Lithium–Fluoride Granites), Moscow: Nauka, 1976.

  23. Kovalenko, V.I., Kuz’min, M.I., Antipov, V.S., and Petrov, L.L., Topaz-bearing quartz keratophyre (ongonite)—a new variety of subvolcanic veined magmatic rocks, Dokl. Akad. Nauk SSSR, 1971, vol. 199, no. 2, pp. 430–433.

    CAS  Google Scholar 

  24. Letnikov, F.A., Medvedev, V.Ya., and Ivanova, L.A., Vzaimodeistvie granitnogo rasplava s karbonatami i silikatami (Interaction of Granitoid Melt with Carbonates and Silicates), Novosibirsk: Nauka SO, 1978.

  25. Liu, Y., Berner, Z., Massonne, H.-J., and Zhong, D., Carbonatite-like dykes from the eastern Hymalayan syntaxis: geochemical, isotopic, and petrogenetic evidences for melting of metasedimentary carbonate rocks within the orogenic crust, J. Asian Earth Sci., 2006, vol. 26, pp. 105–120.

    Article  CAS  Google Scholar 

  26. Luce, R.W., Cygan, G.L., Hemley, J.J., and D’angelo, W.M., Some mineral stability relations in the system CaO–MgO–SiO2–H2O–HCl, Geochim. Cosmochim. Acta, 1985, vol. 49, no. Iss. 2, pp. 525–538.

  27. Manning, D.A.C., The effect of fluorine on liquidus phase relationships in the system Qz–Ab–Or with excess water at 1 kb, Contrib. Mineral. Petrol., 1981, vol. 76, pp. 206–215.

    Article  CAS  Google Scholar 

  28. Marakushev, A.A., Petrogenezis i rudoobrazovanie (geokhimicheskie aspekty) (Petrogenesis and Ore Formation (Geochemical Aspects), Moscow: Nauka, 1979.

  29. Marakushev, A.A., Gramenitskii, E.N., and Korotaev, M.Yu., Petrological model of endogenous ore formation, Geol. Rudn. Mestorozhd., 1983, vol. 25, no. 1, pp. 3–20.

    CAS  Google Scholar 

  30. Peretyazhko, I.S. and Savina, E.A., Tetrad effects in the rare earth element patterns of granitoid rocks as an indicator of fluoride–silicate liquid immiscibility in magmatic systems, Petrology, 2010, vol. 18, no. 5, pp. 514–543.

    Article  CAS  Google Scholar 

  31. Pertsev, N.N., Vysokotemperaturnyi metamorfizm i metasomatizm karbonatnykh porod (High-Temperature Metamorphism and Metasomatism of Carbonate Rocks), Moscow: Nauka, 1977.

  32. Popov, V.A., Mineralogical studies of skarns and carbonatites of the Akhmatov pit, Ural’sk. Mineral. Sb., 2010, no. 17, pp. 110–118.

  33. Popov, V.A., Carbonatites in the skarn objects of the Urals, Litosfera, 2017, no. 1, pp. 126–134.

  34. Purtov, V.K., Yatluk, G.M., and Anfilogov, V.N., Relations of Fe, Mg, Si, and Al in chloride solutions at 873 K and 101 MPa in relation with skarnification of limestones, Dokl. Akad. Nauk SSSR, 1984, vol. 275, no. 4. pp. 1003.

    CAS  Google Scholar 

  35. Reyf, F.G., Seltmann, R., and Zaraisky, G.P., The role of magmatic processes in the formation of banded Li, F-enriched granites from the Orlovka tantalum deposit, Transbaikalia, Russia: microthermometric evidence, Can. Mineral., 2000, vol. 38, no. 4, pp. 915–936.

    Article  CAS  Google Scholar 

  36. Reyf, F.G., Immiscible phases of magmatic fluid and their relation to be and Mo mineralization at the Yermakovka F–Be deposit, Transbaikalia, Russia, Chem. Geol., 2004, vol. 210, nos. 1–4, pp. 49–71.

    Article  CAS  Google Scholar 

  37. Ryabchikov, I.D. and Hamilton, D.L., On the possibility of separation of concentrated chloride solutions during crystallization of felsic magmas, Dokl. Akad.Nauk SSSR, 1971, vol. 197, no. 4, pp. 933–936.

    CAS  Google Scholar 

  38. Ryazantseva, M.D., Boundary Rare-Metal–Fluorite deposit, Geodinamika, magmatizm i metallogeniya Vostoka Rossii (Geodynamics, Magmatism, and Metallogeny of East Russia), Khanchuk, A.I., Eds., Dal’nauka: Moscow, 2006.

    Google Scholar 

  39. Shabynin, L.I., Rudnye mestorozhdeniya i formatsii magnezial’nykh skarnov (Ore Deposits and Formation of Magnesian skarns), Moscow: Nauka, 1974.

  40. Shmulovich, K.I., Dvuokis’ ugleroda v vysokotemperaturnykh protsessakh mineraloobrazovaniya (Carbon Dioxide in High-Temperature Mineral Formation), Moscow: Nauka, 1988.

  41. Skippen, G., An experimental model for low pressure metamorphism of siliceous dolomitic marble, Am. J. Sci., 1974, vol. 274, no. 5, pp. 487–509.

    Article  CAS  Google Scholar 

  42. Sklyarov, E.V., Fedorovsky, V.S., Kotov, A.B., et al., Carbonatites in collisional settings and pseudo-carbonatites of the Early Paleozoic Ol’khon collisional system, Russ. Geol. Geofiz., 2009, vol. 50, no. 12, pp. 1091–1106.

    Article  Google Scholar 

  43. Smith, F.G., Transport and deposition of the non-sulphide vein minerals. III. phase relations at the pegmatitic stage, Econ. Geol., 1948, vol. 43, no. 7, pp. 535–546.

    Article  CAS  Google Scholar 

  44. Spurr, J.E., The Ore Magmas, McGraw-Hill, 1923.

    Google Scholar 

  45. Starikova, A.E., Sklyarov, E.V., and Sharygin, V.V., Y–REE mineralization in biotite–arfvedsonite granites of the Katugin rare-metal deposit, Transbaikalia, Russia, Dokl. Earth Sci., 2019, vol. 487, no. 1, pp. 800–803.

    Article  CAS  Google Scholar 

  46. Syromyatnikov, F.V. and Vorob’ev, I.M., Experience in experimental modeling of the formation of calcareous skarns, Dokl. Akad. Nauk SSSR, 1969, vol. 84, no. 3, pp. 690–693.

    Google Scholar 

  47. Vidale, R., Metasomatism in a chemical gradient and the formation of calc–silicate bands, Am. J. Sci., 1969, vol. 267, no. 8, pp. 857–874.

    Article  CAS  Google Scholar 

  48. Vladimirov, A.G., Phan Luu Ahn, Kruk, N.N., et al., Petrology of the tin-bearing granite–leucogranites of the Piaoak Massif, northern Vietnam, Petrology, 2012, vol. 20, no. 6, pp. 545–566.

    Article  CAS  Google Scholar 

  49. Wenzel, T., Baumgartner, L.P., Brugmann, G.E., et al., Partial melting and assimilation of dolomitic xenoliths by mafic magma: the Ioko-Dovyren intrusion (north Baikal region, Russia), J. Petrol., 2002, vol. 43, pp. 2049–2074.

    Article  CAS  Google Scholar 

  50. Wyllie, P.J. and Haas, J.L., The system CaO–SiO2–CO2–H2O. II. The petrogenetic model, Geochim. Cosmochim. Acta, 1966, vol. 30, pp. 525–543.

    Article  CAS  Google Scholar 

  51. Zaraisky, G.P., Zonal’nost’ i usloviya obrazovaniya metasomaticheskikh porod (Zoning and Conditions of Formation of Metasomatic Rocks), Moscow: Nauka, 1989.

  52. Zharikov, V.A., Skarn deposits, Genezis endogennykh rudnykh mestorozhdenii (Genesis of Endogenous Ore Deposits), Moscow: Nedra, 1968, pp. 220–302.

    Google Scholar 

  53. Zharikov, V.A., Izbrannye trudy (Selected Papers), Shapovalov, Yu.B., Eds., Moscow: Nauka, 2011, Vol. 1.

    Google Scholar 

Download references

ACKNOWLEDGEMENTS

The authors thank V.A. Popov, T.I. Shchekina, A.R. Kotel’nikov, and B.B. Shkurskii for discussing the results and valuable comments on the manuscript.

Funding

This work was supported by ongoing institutional funding under the research project “Petrogenetic Regimes in the Inner Geospheres of the Earth”. No additional grants to carry out or direct this particular research were obtained. The analytical data were obtained at the Laboratory of Analytical Techniques of High Spatial Resolution at the Department of Petrology and Volcanology, Geological Faculty, Moscow State University, with the use of a JEOL JXA-8230 microprobe that had been purchased under the Development Program for the Moscow State University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ya. O. Alferyeva.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by E. Kurdyukov

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alferyeva, Y.O., Gramenitsky, E.N. & Novikova, A.S. Experimental Modeling of Interaction between Fluorine-Containing Granite Melt and Calcite Marble. Petrology 32, 236–248 (2024). https://doi.org/10.1134/S0869591124020024

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0869591124020024

Keywords:

Navigation