Skip to main content
Log in

Mg-(Fe + Ti)-Al petrochemical diagram for the melting of mantle pyrolite: Implications for the derivation conditions of the parental magmas of major volcanic series

  • Published:
Petrology Aims and scope Submit manuscript

Abstract

The Mg-(Fe + Ti)-Al melting diagram for pyrolite based on experimental data from literature shows the composition of the liquid as a function of pressure and the degree of pyrolite melting. Three mechanisms of liquid separation from a mantle source material are discussed: (i) gravitational mechanism, which works at a degree of source material melting of 25%, (ii) filter pressing mechanism, which is efficient at degrees of melting lower than 2%, and (iii) nearly complete local melting of mantle material. Garnet in the solid residue is thought to play an important role by affecting the chemistries of mantle magmas. The comparison of petrochemical and experimental data in a Mg-(Fe + Ti)-Al ternary plot shows that picrite and ferropicrite alcaline primary magmas are segregated at depths of 120 and 210 km, respectively, in the garnet stability zone, at degrees of melting lower than 2%; and tholeiite basalt magmas are segregated above this zone. At degrees of melting of 25%, picrobasalt, komatiite-basalt, picrite, and ferropicrite primary magmas of the tholeiite series are derived at depths of 80, 130, 240, and 300 km, respectively. Ultrabasic komatiite magma is generated at high degrees of mantle source melting, with the solid residues devoid of garnet. The tholeiite basalt series can be produced by two parental melts: aluminous and magnesian basaltic, both separated from the mantle sources via the filter pressing mechanism: the former at depths shallower than 30 km in ocean spreading zones (TOR-2), and the latter at depths of 50–60 km in oceanic spreading zones (TOR-1) and in the subcontinental lithosphere. Primary magnesian basalt magmas of the calc-alkaline and tholeiite series are derived in the lithospheric mantle at the same depths and low degrees of melting. Different evolutionary trajectories of compositionally similar primary magmas are controlled by the conditions of their further fractional crystallization: in compressional environments and with fluids saturating the melts in subduction zones for the former and in extensional environments and free magma ascent to the surface for the latter. Ultrapotassic rock series, such as lamprophyres, leucitites, kamafugites, lamproites, and kimberlites, are most probably generated via the melting of the metasomatized subcratonic mantle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aitken, B.G. and Echeverria, L.M., Petrology and Geochemistry of Komattites and Tholeiites from Gorgona Island, Colombia, Contrib. Mineral. Petrol., 1984, vol. 86, pp. 94–105.

    Article  Google Scholar 

  • Ariskin, A.A. and Barmina, G.S., Modelirovanie fazovykh ravnovesii pri kristallizatsii bazal’tovykh magm (Simulation of Phase Equilibria during Crystallization of Basaltic Magmas), Moscow: MAIK, 2000.

    Google Scholar 

  • Arndt, N.T., Ultrabasic Magma and High-Degree Melting of the Mantle, Contrib. Mineral. Petrol., 1977, vol. 64, pp. 205–221.

    Article  Google Scholar 

  • Arndt, N.T., Kerr, A.C., and Tarney, J., Dynamic Melting in Plume Heads: Formation of Gorgona Komatiites and Basalts, Earth Planet. Sci. Lett., 1997, vol. 146, pp. 289–301.

    Article  Google Scholar 

  • Arzamastsev, A.A., Ivanova, T.I., and Korobeinikov, A.N., Petrologiya iiolit-urtitov i zakonomernosti razmeshcheniya v nikh zalezhei apatita (Petrology of the Ijolite-Urtites and Distribution of Apatite Lodes in Them), Leningrad: Nauka, 1987.

    Google Scholar 

  • Arzamastsev, A.A., Alkaline Ultramafic Rocks in the Khibiny Massif: New Data and Petrological Consequences, in Shchelochnoi magmatizm severo-vostochnoi chasti Baltiiskogo shchita (Alkaline Magmatism of the Northeastern Baltic Shield), Apatity: Kol’sk. NTs RAN, 1990, pp. 4–19.

    Google Scholar 

  • Arzamastsev, A.A., Arzamastseva, L.V., and Belyatskii, B.V., Alkaline Volcanism of the Initial Phase of Paleozoic Tectono-Magmatic Reactivation in Northeastern Fennoscandia: Geochemical Features and Petrologic Consequences, Petrology, 1998, no. 3, pp. 293–311.

  • Arzamastsev, A.A., Fedotov, Zh.A., and Arzamastseva, L.V., Daikovyi magmatizm severo-vostochnoi chasti Baltiiskogo shchita (Dike Magmatims of the Northeastern Baltic Shield), St. Petersburg: Nauka, 2009.

    Google Scholar 

  • Baker, M.B. and Stolper, E.M., Determining the Composition of High-Pressure Mantle Melts Using Diamond Aggregates, Geochim. Cosmochim. Acta, 1994, vol. 58, no. 13, pp. 2811–2827.

    Article  Google Scholar 

  • Baker, M.B., Hirschmann, M.M., Ghiorso, M.S., and Stolper, E.M., Compositions of Near-Solidus Peridotire Melts Experiments and Thermodynamic Calculations, Nature, 1995, vol. 375, no. 6529, pp. 308–311.

    Article  Google Scholar 

  • Balashov, Yu.A., Bayanova, T.B., and Mitrofanov, F.P., Isotope Data on the Age and Genesis of Layered Basic-Ultrabasic Intrusions in the Kola Peninsula and Northern Karelia, Northeastern Baltic Shield, Precambrian Res., 1993, vol. 64, pp. 197–205.

    Article  Google Scholar 

  • Bogatikov, O.A., Ryabchikov, I.D., and Kononova, V.A., Lamproity (Lamproites), Moscow: Nauka, 1991.

    Google Scholar 

  • Borodin, L.S. and Gladkikh, V.S., New Data on Petrography and Geochemistry of the Volcanogenic Alkaline Rocks of the Kontozero Formation, in Novye dannye po geologii geokhimii i mineralogii shchelochnykh porod (New Data on Geology, Geochemistry, and Mineralogy of Alkaline Rocks), Moscow: Nauka, 1973, pp. 48–54.

    Google Scholar 

  • Borodin, L.S., Gladkikh, V.S., and Egorova, N.F., Petrology and Geochemistry of the Volcanic Rocks of the Lovozero Alkaline Massif, in Novye dannye po geologii geokhimii i mineralogii shchelochnykh porod (New Data on the Geology, Geochemistry, and Mineralogy of Alkaline Rocks), Moscow: Nauka, 1973, pp. 25–48.

    Google Scholar 

  • Borutskii, B.E., Porodoobrazuyushchie mineraly vysokoshchelochnykh kompleksov (Rock-Forming Minerals of Highly Alkaline Complexes), Moscow: Nauka, 1988.

    Google Scholar 

  • Bussen, I.V. and Sakharov, A.S., Paleozoic Lovozero Sedimentary-Volcanogenic Formation of Lujarvite, Kola Peninsula, in Voprosy litologii fanerozoya Kol’skogo poluostrova (Lithological Questions of the Phanerozoic of the Kola Peninsula), Leningrad: Nauka, 1972, pp. 5–37.

    Google Scholar 

  • Cattel, A. and Arndt, N., Low- and High-Alumina Komatiites from a Late Archaean Sequence, Newton Township, Ontario, Contrib. Mineral. Petrol., 1987, vol. 97, pp. 218–227.

    Article  Google Scholar 

  • Clark, D.B., Tertiary Basalts of Baffin Bay: Possible Primary Magma from the Mantle, Contrib. Mineral. Petrol., 1970, vol. 25, pp. 203–244.

    Article  Google Scholar 

  • Conticelli, S. and Piccerillo, A., Petrology and Geochemistry of Potassic and Ultrapotassic Volcanism in Central Italy: Petrogenesis and Inferences on the Evolution of the Mantle Sources, Lithos, 1992, vol. 28, pp. 221–240.

    Article  Google Scholar 

  • Dmitriev, L.V., Chemical Variability of Mid-Ocean Ridge Basalts as a Function of the Geodynamic Setting of Their Formation, Petrology, 1998, no. 4, pp. 314–334.

  • Dobretsov, N.L., Global Geodynamic Evolution of the Earth and Global Geo0dynamic Models, Russ. Geol. Geophys., 2010, no. 6, pp. 592–610.

  • Falloon, T.J., Green, D.H., Hatton, C.J., and Harris, K.L., Anhydrous Partial Melting of a Fertile and Depleted Peridotite from 2 to 30 kbar and Application to Basalt Petrogenesis, J. Petrol., 1988, vol. 29, no. 6, pp. 1257–1282.

    Google Scholar 

  • Falloon, T.J., Green, D.H., O’Neill, H.St.C., and Hibberson, W.O., Experimental Tests of Low Degree Peridotite Partial Melt Compositions: Implications for the Nature of Anhydrous Near-Solidus Peridotite Melts at 1 GPa, Earth Planet. Sci. Lett., 1997, vol. 152, pp. 149–162.

    Article  Google Scholar 

  • Falloon, T.J., Danyushevsky, L.V., and Green, D.H., Peridotite Melting at 1 GPa: Reversal Experiments on Partial Melt Compositions Produced by Peridotite-Basalt Sandwich Experiments, J. Petrol., 2001, vol. 42, no. 12, pp. 2363–2390.

    Article  Google Scholar 

  • Fedotov, Zh.A., Serov, P.A., and Elizarov, D.V., Tholeiites from the Depleted Subcontinental Mantle in the Root Zone of the Monchegorskii Pluton, Baltic Shield, Dokl. Earth Sci., 2009, vol. 429, pp. 1462–1466.

    Article  Google Scholar 

  • Fedotov, Zh.A., Role of General Melt Convection in the Development of Cryptic Layering of Intrusive Complexes at Cratons, Petrology, 2011, no. 2, pp. 198–215.

  • Gao, Y., Hou, Z., Kamber, B.S., Wei, R., Meng, X., and Zhao, R., Lamproitic Rocks from a Continental Collision Zone: Evidence for Recycling of Subducted Tethyan Oceanic Sediments in the Mantle Beneath Southern Tibet, J. Petrol., 2007, vol. 48, no. 4, pp. 729–752.

    Article  Google Scholar 

  • Gast, D.A. and Perfit, M.R., Phase Relations of a High-Mg Basalt from the Aleutian Island Arc: Implications for Primary Island Arc Basalts and High-Al Basalts, Contrib. Mineral. Petrol., 1987, vol. 97, pp. 7–18.

    Article  Google Scholar 

  • Guo, Zh., Wilson, M., Lio, J., and Mao, Q., Post-Collisional, Potassic and Ultrapotassic Magmatism of the Northern Tibetian Plato: Constrains on Characteristics of the Mantle Source, Geodynamic Setting and Uplift Mechanisms, J. Petrol., 2006, vol. 47, no. 6, pp. 1177–1220.

    Article  Google Scholar 

  • Hart, S.R., Equilibrium During Mantle Melting: a Fractal Tree Model, Proc. Natl. Acad. Sci. U.S.A., 1993, vol. 90, pp. 11914–11918.

    Article  Google Scholar 

  • Hawkesworth, C.J. and O’Nions, R.K., The Petrogenesis of Some Archaean Volcanic Rocks from S. Africa, J. Petrol., 1977, vol. 18, no. 3, pp. 487–520.

    Google Scholar 

  • Herzberg, C.T. and Zhang, J., Melting Experiments on Anhydrous Peridotite KLB-1, J. Geophys. Res., 1996, vol. 101B4, pp. 8271–8295.

    Article  Google Scholar 

  • Herzberg, C.T. and Zhang, J., Melting Experiments in the Systems CaO-MgO-Al2O3-SiO2 and MgO-SiO2 at 3 to 15 GPa, Am. Mineral., 1998, vol. 83, pp. 491–500.

    Google Scholar 

  • Herzberg, C.T. and O’Hara, M.J., Phase Equilibrium Constraints on the Origin of Basalts, Picrites, and Komatiites, Earth Sci. Rev., 1998, vol. 44, pp. 39–79.

    Article  Google Scholar 

  • Hirose, K. and Kushiro, I., Partial Melting of Dry Peridotites at High Pressures: Determination of Compositions of Melts Segregated from Peridotite Using Aggregates of Diamond, Earth Planet. Sci. Lett., 1993, vol. 114, pp. 477–489.

    Article  Google Scholar 

  • Hirose, K. and Kawamoto, T., Hydrous Partial Melting of Lherzolite at 1GPa: The Effect of H2O on the Genesis of Basaltic Magmas, Earth Planet. Sci. Lett., 1995, vol. 133, pp. 463–473.

    Article  Google Scholar 

  • Jahn, B.-M., Gruau, G., and Glikson, A.Y., Komatiite of the Onverwacht Group, S. Africa: REE Geochemistry, Sm/Nd Age and Mantle Evolution, Contrib. Mineral. Petrol., 1982, vol. 80, pp. 25–40.

    Article  Google Scholar 

  • Kawamoto, T. and Holloway, J.R., Melting Temperature and Partial Melt Chemistry of H2O-Saturated Mantle Peridotite to 11 Gigapascals, Science, 1997, vol. 276, pp. 240–243.

    Article  Google Scholar 

  • Kelemen, P.B., Braun, M., and Hirth, G., Spatial Distribution of Melt Conduits in the Mantle Beneath Oceanic Spreading Ridges: Observations from the Ingalls and Oman Ophiolites, Geochem., Geophys., Geosyst., 2000, vol. 1, Paper no. 1999GC000012.

  • Kinzler, R.J., Melting of Mantle Peridotite at Pressures Approaching the Spinel to Garnet Transition: Application to Mid-Ocean Ridge Basalts Petrogenesis, J. Geophys. Res., 1997, vol. 102(B1), 853–874.

    Article  Google Scholar 

  • Kirichenko, L.A., Kontozerskaya seriya kamennougol’nykh porod na Kol’skom p-ove (The Kontozero Group of the Carboniferous Rocks on the Koola Peninsula), Leningrad: Nedra, 1970.

    Google Scholar 

  • Komatiity i vysokomagnezial’nye vulkanity rannego dokembriya Baltiiskogo shchita (Early Precambrian Komatiites and Highly-Magnesian Volcanics of the Baltic Shield), Bogatikov, O.A, Ed., Leningrad: Nauka, 1988.

    Google Scholar 

  • Kuehner, S.M., Edgar, A.D., and Arima, M., Petrogenesis of the Ultrapotassic Rocks from the Leucite Hills, Wyoming, Am. Mineral., 1981, vol. 66, pp. 663–677.

    Google Scholar 

  • Kukharenko, A.A., Bulakh, A.G., Il’inskii, G.A., et al., Metallogenic Features of Alkaline Formations of the Eastern Baltic Shield, in Tr. Leningradsk. O-va Estestvoispyt., 1971, vol. 72(2).

  • Kuno, H., High-Alumina Basalt, J. Petrol., 1960, vol. 1, no. 2, pp. 121–145.

    Google Scholar 

  • Laporte, D., Toplis, M.J., Seyler, M., and Devidal, J-L., A New Experimental Technique for Extracting Liquids from Peridotite at Very Low Degrees of Melting: Application to Partial Melting of Depleted Peridotite, Contrib. Mineral. Petrol., 2004, vol. 146, pp. 463–484.

    Article  Google Scholar 

  • Levkovskii, R.Z., Subplatformennye granitoidnye kompleksy severo-zapada Kol’skogo poluostrova (Subplatform Granitoid Complexes of the Northwestern Kola Peninsula), Leningrad: Nauka, 1976.

    Google Scholar 

  • Libourel, G., Boivin, P., and Biggar, G.M., The Univariant Curve Liquids Forsterite-Anortite-Diopside in the System CMAS at 1 Bar: Solid Solutions and Melt Structure, Contrib. Mineral. Petrol., 1989, vol. 102, pp. 406–421.

    Article  Google Scholar 

  • Litasov, K.D. and Ohtani, E., Phase Relations and Melt Compositionsin CMAS-Pyrolite-H2O System up to 25 GPa, Phys. Earth Planet. Int, 2002, vol. 134, pp. 105–127.

    Article  Google Scholar 

  • McDonough, W.F. and Sun, S.-S., The Composition of the Earth, Chem. Geol., 1995, vol. 120, pp. 223–253.

    Article  Google Scholar 

  • Milholland, C.S. and Presnall, D.C., Liquidus Phase Relationships in the CaO-MgO-Al2O3-SiO2 System at 3.0 GPa: the Aluminous Pyroxene Thermal Divide and High-Pressure Fractionation of Picritic and Komatiitic Magmas, J. Petrol., 1997, vol. 39, no. 1, pp. 3–27.

    Article  Google Scholar 

  • Miller, C., Schuster, R., Klötzli, U., Frank, W., and Purtscheller, F., Post-Collisional Potassic and Ultrapotassic Magmatism in SW Tibet: Geochemical and Sr-Nd-Pb-O Isotopic Constraints for Mantle Source Characteristics and Petrogenesis, J. Petrol., 1999, vol. 40, no. 9, pp. 1399–1424.

    Article  Google Scholar 

  • Mirnejad, H. and Bell, K., Origin and Source Evolution of the Leucite Hills Lamproites: Evidence from Sr-Nd-Pb-O Isotopic Compositions, J. Petrol., 2006, vol. 47, no. 12, pp. 2463–2489.

    Article  Google Scholar 

  • Moralev, V.M., Baluev, A.S., Larin, N.V., Przhiyalgovskii, E.S., and Terekhov, E.N., REE Geochemistry and Zonal Distribution of Alkaline Rocks in the Belomorian Dike Belt: The Evidence for the Kandalaksha Paleorift Propagation, Geochem. Int., 2002, vol. 40, no. 5, 447–459.

    Google Scholar 

  • Nelson, D.R., Isotopic Characteristics of Potassic Rocks: Evidence for the Involvement of Subducted Sediments in Magma Genesis, Lithos, 1992, vol. 28, pp. 403–420.

    Article  Google Scholar 

  • Nesbit, R.W. and Sun, S.-S., Geochemistry of Archaean Spinifex-Textured Peridotites and Magnesian and Low-Magnesian Tholeiites, Earth Planet. Sci. Lett., 1976, vol. 31, pp. 433–453.

    Article  Google Scholar 

  • Nesbit, R.W., Sun, S.-S., and Purvis, A.C., Komatiite Geochemistry and Genesis, Can. Mineral., 1979, vol. 17, pp. 165–186.

    Google Scholar 

  • Nikitina, L.P., Levskii, L.K., Lokhov, K.I., et al., Proterozoic Alkaline-Ultramafic Magmatism in the Eastern Part of the Baltic Shield, Petrology, 1999, no. 3, pp. 246–266.

  • O’Hara, M.J., Primary Magmas and the Origin of Basalts, Scot. J. Geol, 1965, vol. 1, pp. 19–40.

    Article  Google Scholar 

  • Peccerillo, A., Poli, G., and Serri, G., Petrogenesis of Orenditic and Kamafugitic Rocks from Central Italy, Can. Mineral., 1988, vol. 26, pp. 45–65.

    Google Scholar 

  • Peck, D.L., Wright, T.L., and Moore, J.G., Crystallisation of Tholeiitic Basalt in Alae Lava Lake, Hawaii, Bull. Volcanol., 1966, vol. 29, pp. 629–642.

    Article  Google Scholar 

  • Pickering-Witter, J. and Johnston, A.D., The Effects of Variable Bulk Composition on the Melting Systematics of Fertile Peridotitic Assemblages, Contrib. Mineral. Petrol., 2000, vol. 140, pp. 190–211.

    Article  Google Scholar 

  • Presnall, D.C., Dixon, J.R., O’Donnell, T.H., and Dixon, S.A., Generation of Mid-Ocean Ridge Tholeiites, J. Petrol., 1979, vol. 20, no. 1, pp. 3–35.

    Google Scholar 

  • Pyatenko, I.K. and Osokin, E.D., Geochemical Features of the Kontozero Carbonatite Paleovolcano on the Kola Peninsula, Geokhimiya, 1988, no. 5, pp. 723–737.

  • Rusanov, M.S., Arzamastsev, A.A., and Khmelinskii, V.I., New Volcanoplutonic Complex of the Kola Alkaline Province: Geology and Composition, Otechestvennaya Geol., 1993, no. 11, pp. 35–43.

  • Skuf’in, P.K. and Bayanova, T.B., Lamprophyres in the Early Proterozoic Volcanic Complex of the Pechenga Structure, Kola Peninsula, Petrology, 1999, vol. 7, no. 3, pp. 299–315.

    Google Scholar 

  • Slater, L., McKenzie, D., Gronvold, K., and Shimizu, N., Melt Generation and Movement Beneath Theistareykir, NE Iceland, J. Petrol., 2001, vol. 42, no. 2, pp. 321–354.

    Article  Google Scholar 

  • Smith, F.G., Physical Geochemistry, Addison-Wesley, 1963.

  • Sun, S.-S. and Nesbit, R.W., Petrogenesis of Archaean Ultrabasic and Basic Volcanics: Evidence from Rare Earth Elements, Contrib. Mineral. Petrol., 1978, vol. 65, pp. 301–325.

    Article  Google Scholar 

  • Tikhonenkova, R.P., New Data on the Age and composition of the Lovozero Formation of the Kola Region, Dokl. Akad. Nauk SSSR, 1972, vol. 203, no. 4, pp. 903–906.

    Google Scholar 

  • Tomlinson, K.Y., Hughes, D.J., Thurston, P.C., and Hall, R.P., Plume Magmatism and Crustal Growth at 2.9 to 3.0 Ga in the Steep Rock and Lumby Lake Area, Western Superior Province, Lithos, 1999, vol. 46, pp. 103–136.

    Article  Google Scholar 

  • Venturelli, G., Capedri, S., Di Battistini, G., Crawford, A., Kogarko, L.N., and Celestini, S., The Ultrapotassic Rocks from Southeastern Spain, Lithos, 1984, vol. 17, pp. 37–54.

    Article  Google Scholar 

  • Villaume, J.F. and Rose, A.W., The Geochemistry of Some Archaean Ultramafic Lavas, Chem. Geol., 1977, vol. 19, pp. 43–60.

    Article  Google Scholar 

  • Villiger, S., Ulmer, P., Muntener, O., and Thompson, A.B., The Liquid Line of Descent of Anhydrous, Mantle-Derived, Tholeiitic Liquids by Fractional and Equilibrium Crystallization-An Experimental Study at 1.0 GPa, J. Petrol., 2004, vol. 45, no. 12, pp. 2369–2388.

    Article  Google Scholar 

  • Walter, M.J. and Presnall, D.C., Melting Behavior of Simplified Lherzolite in the System CaO-MgO-Al2O3-SiO2-Na2O from 7 to 35 kbar, J. Petrol., 1994, vol. 35, no. 2, pp. 329–359.

    Google Scholar 

  • Walter, M.J., Melting of Garnet Peridotite and the Origin of Komatiite and Depleted Lithosphere, J. Petrol., 1998, vol. 39, no. 1, pp. 29–60.

    Article  Google Scholar 

  • Wasylenki, L.E., Baker, M.B., Kent, A.J.R., and Stolper, E.M., Near-Solidus Melting of the Shallow Upper Mantle: Partial Melting Experiments on Depleted Peridotite, J. Petrol., 2003, vol. 44, no. 7, pp. 1163–1191.

    Article  Google Scholar 

  • Xie, Q., Kerrich, R., and Fan, J., HFSE/REE Fractionations Recorded in Three Komatiit-Basalt Sequences, Archean Abitibi Greenstone Belt: Implications for Multiple Plume Sources and Depths, Geochim. Cosmochim. Acta, 1993, vol. 57, pp. 4111–4118.

    Article  Google Scholar 

  • Yang, H-J., Kinzler, R.J., and Grove, T.L., Experiments and Models of Anhydrous, Basaltic Olivine-Plagioclase-Augite Saturated Melts from 0.001 to 10 kbar, Contrib. Mineral. Petrol., 1996, vol. 124, pp. 1–18.

    Article  Google Scholar 

  • Zak, S.I., Kamenev, E.A., Minakov, F.V., et al., Khibinskii shchelochnoi massiv (Khibiny Alkaline Massif), Leningrad: Nedra, 1972.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zh. A. Fedotov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fedotov, Z.A. Mg-(Fe + Ti)-Al petrochemical diagram for the melting of mantle pyrolite: Implications for the derivation conditions of the parental magmas of major volcanic series. Petrology 20, 640–657 (2012). https://doi.org/10.1134/S0869591112070028

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0869591112070028

Keywords

Navigation