Skip to main content
Log in

Composition, sources, and genesis of granitoids in the Irtysh Complex, Eastern Kazakhstan

  • Published:
Petrology Aims and scope Submit manuscript

Abstract

Intrusions of the Irtysh Complex are spatially restricted to the regional Irtysh Shear Zone (ISZ) and are hosted in blocks of high-grade metamorphic rocks (Kurchum, Predgornenskii, Sogra, and others) in the greenschist matrix of the ISZ. The massifs consist of contrasting rock series from gabbro to plagiogranite and granite at strongly subordinate amounts of diorite and the practical absence of rocks of intermediate composition (tonalite and granodiorite). The complex was produced in the Early Carboniferous, simultaneously with the onset of the origin of the ISZ itself. The granitoids composing the complex affiliate with diverse petrochemical series (from subaluminous plagiogranite of the andesite series to granite of the calc-alkaline series) and contain similar REE and HFSE concentrations [total REE = 103–163 ppm (La/Yb) n = 3.59–5.44, Zr (200–273 ppm), Nb (7.6–10.6 ppm), Hf (6.1–7.6 ppm), and Ta (0.68–1.19 ppm)] but are different in concentrations in LILE [Rb (3–9 and 121–221 ppm), Sr (213–375 and 77–148 ppm), and Ba (67–140 and 240–369 ppm)] and isotopic composition of Nd (ɛNd(T) from +5.3 in the plagiogranite to −1.2 in the granite) and O (δ18O from +9.4 in the plagiogranite to +14.5 in the granite). Data on the geochemistry and isotopic composition of metamorphic rocks of the Kurchum block and numerical geochemical simulations indicate that the granitoids were generated via the melting of a heterogeneous crustal source, which consisted of upper crustal metapelites and metabasites of the oceanic basement of the blocks of high-grade metamorphic rocks. The differences in the chemical and isotopic compositions of the granitoids were predetermined by the mixing of variable proportions of granitoid magmas derived from metapelite and metabasite sources.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arth, J.G., Some Trace Elements in Trondhjemites—Their Implications to Magma Genesis and Paleotectonic Setting, in Trondhjemites, Dacites, and Related Rocks, Amsterdam: Elsevier, 1979.

    Google Scholar 

  • Arth, J.G. and Hanson, G.N., Geochemistry and Origin of the Early Precambrian Crust of North-Eastern Minnesota, Geochim. Cosmochim. Acta, 1975, vol. 39, pp. 325–362.

    Article  Google Scholar 

  • Arth, J.G., Behavior of Trace Elements during Magmatic Processes—a Summary of Theoretical Models and Their Applications, J. Res. U.S. Geol. Surv., 1976, vol. 4, pp. 41–47.

    Google Scholar 

  • Barton, M., Salter, V.J.M., and Huijsmans, J.P.P., Sr-Isotope and Trace Element Evidence of the Role of Continental Crust in Calc-Alkaline Volcanism on Santorine and Milos, Aegean Sea, Greece, Earth Planet. Sci. Lett., 1983, vol. 63, pp. 273–291.

    Article  Google Scholar 

  • Beard, J.S. and Lofgren, G.E., Dehydration Melting and Water-Saturated Melting of Basaltic and Andesitic Greenstones and Amphibolites at 1, 3, and 6–9 Kb, J. Petrol., 1991, vol. 32, pp. 365–401.

    Google Scholar 

  • Bekzhanov, G.R., Geologicheskoe stroenie Kazakhstana (Geological Structure of Kazakhstan), Almaty: Akademiya mineral’nykh resursov Respubliki Kazakhstan, 2000.

    Google Scholar 

  • Berzin, N.A., Colman, R.K., Dobretsov, N.P., et al., Geodynamic Map of the Western Pacific, Geol. Geofiz., 1994, vol. 35, nos. 7–8, pp. 8–28.

    Google Scholar 

  • Bespaev, Kh.A., Polyansky, N.V., Ganzhenko, G.D., et al., Geologiya i metallogeniya Yugo-Zapadnogo Altaya (Geology and Metallogeny of Southwestern Altai), Almaty: Gylym, 1997.

    Google Scholar 

  • Bhatia, M.R., Plate Tectonics and Geochemical Composition of Sandstones, J. Geol., 1983, vol. 91, no. 6, pp. 611–627.

    Article  Google Scholar 

  • Boynton, W.V., Cosmochemistry of the Rare Earth Elements: Meteorite Studies, in Rare Earth Element Geochemistry, Amsterdam: Elsevier, 1984, pp. 63–114.

    Google Scholar 

  • Buslov, M.M., Watanabe, T., Smirnova, L.V., et al., Role of Strike-Slip Faulting in Late Paleozoic-Early Mesozoic Tectonics and the Geodynamics of the Altai-Sayan and East Kazakhstan Region, Russ. Geol. Geophys., 2003, vol. 44, no. 1–2, pp. 47–70.

    Google Scholar 

  • Castro, A., Morenoventas, I., and Delarosa, J.D., H-Type (Hybrid) Granitoids—A Proposed Revision of the Granite-Type Classification and Nomenclature, Earth Sci. Rev., 1991, vol. 31, nos. 3–4, pp. 237–253.

    Article  Google Scholar 

  • O’Connor, J.T., A Classification for Quartz-Rich Igneous Rocks Based on Feldspar Ratios, U.S. Geol. Surv., Prof. Paper, 1965, vol. 525-B, pp. 79–84.

    Google Scholar 

  • DePaolo, D.J. and Wasserburg, G.J., Petrogenetic Mixing Model and Nd-Sr Isotopic Patterns, Geochim. Cosmochim. Acta, 1979, vol. 43, pp. 615–627.

    Article  Google Scholar 

  • Ermolov, P.V. and Polyanskii, N.V., Metamorphic Complexes of the Junction Zone of the Rudnyi Altai and Rare-Metal Kalba, Geol. Geofiz., 1980, no. 3, pp. 49–57.

  • Goldstein, S.J. and Jacobsen, S.B., Nd and Sr Isotopic Systematics of River Water Suspended Material — Implications for Crustal Evolution, Earth Planet. Sci. Lett., 1988, vol. 87, no. 3, pp. 249–265.

    Article  Google Scholar 

  • Izokh, E.P., Giperbazit-gabbro-granitnyi formatsionnyi ryad i formatsiya vysokoglinozemistykh granitov (Ultramafic-Gabbro-Granite Series and Formation of High-Alumina Granites), Novosibirsk: Izd-vo SO AN SSSR, 1965.

    Google Scholar 

  • Jacobsen, S.B. and Wasserburg, G.J., Sm-Nd Isotopic Evolution of Chondrites and Achondrites, II, Earth Planet. Sci. Lett., 1984, vol. 67, pp. 137–150.

    Article  Google Scholar 

  • Khoreva, B.Ya., Geologicheskoe stroenie, intruzivnyi magmatizm i metamorfizm Irtyshskoi zony smyatiya (Geological Structure, Intrusive Magmatism, and Metamorphism of the Irtysh Folding Zone), Moscow: Gosgeoltekhizdat, 1963.

    Google Scholar 

  • Koester, E., Pawley, A.R., Fernandes, L.A., et al., Experimental Melting of Cordierite Gneiss and the Petrogenesis of Syntranscurrent Peraluminous Granites in Southern Brazil, J. Petrol., 2002, vol. 43, no. 8, pp. 1595–1616.

    Article  Google Scholar 

  • Konnikov, E.G., Ermolov, P.V., and Dobretsov, G.L., Petrologiya Sininversionnykh Gabbro-Granitnykh Serii (Petrology of Syn-Inversion Gabrro-Granite Series), Novosibirsk: Nauka, 1977.

    Google Scholar 

  • Kozakov, I.K., Bibikova, E.V., Kirnozova, T.I., et al., Hercynian Age of Metamorphism of Crystalline Rocks in the Kurchum-Kal’dzhir Block of the Irtysh Folding Zone, East Kazakhstan, in Materialy II Rossiiskoi Konferentsii po Izotopnoi Geokhronologii “Izotopnaya Geokhronologiya v Reshenii Problem Geodinamiki i Rudogeneza”, (Proceedings of 2nd Russian Conference on Isotope Geochronology in Solving the Problems of Geodynamics and Ore Genesis), 2003, pp. 203–205.

  • Krylov, K.A. and Luchitskaya, M.V., Felsic Magmatism in the Accretionary Structures of the Koryak Highland, Kamchatka, and Alaska, Geotectonics, 1999, vol. 33, no. 5, pp. 371–385.

    Google Scholar 

  • Kuibida, M.L., Khromykh, S.V., and Moroz, E.N., Petrological Model of the Formation of Syn-Inversion Volcanoplutonic Associations of East Kazakhstan, in Geodinamicheskaya evolyutsiya litosfery Tsentral’no-Aziatskogo podvizhnogo poyasa (ot okeana k kontinentu): Materialy nauchnogo soveshchaniya po Programme fundamental’nykh issledovanii (Geodynamic Evolution of the Lithosphere of the Central Asian Mobile Belt (from Ocean to Continent): Proceedings of Scientific Conference on the Program of Basic Research), Irkutsk: Inst. Geografii SO RAN, 2004, vol. 1, pp. 199–202.

    Google Scholar 

  • Liew, T.C. and Hofmann, A.W., Precambrian Crustal Components, Plutonic Association, Plate Environment of the Hercynian Fold Belt of Central Europe: Indications from a Nd and Sr Isotopic Study, Contrib. Mineral. Petrol., 1988, vol. 98, pp. 129–138.

    Article  Google Scholar 

  • Mahood, G. and Hildreth, W., Large Partition Coefficients for Trace Elements in High-Silica Rhyolites, Geochim. Cosmochim. Acta, 1983, vol. 47, pp. 11–30.

    Article  Google Scholar 

  • Martin, H., Nature, Origin et Evolution d’Un Segment de Croute Continenale Archeene; Contraintes Chimiques et Isotopiques. Exemple de la Finland, Orientale. Mem. Doc. Cent. Arm. Et. Struct. Socles, Rennes, 1985, vol. 1.

  • Mossakovskii, A.A., Ruzhentsev, S.V., Samygin, S.G., and Kheraskova, T.N., Central Asian Fold Belt: Geodynamic Evolution and History of Formation, Geotektonika, 1993, no. 6, pp. 3–33.

  • Nash, W.P. and Crecraft, H.R., Partition Coefficients Ib Silisic Magmas, Geochim. Cosmochim. Acta, 1985, vol. 49, pp. 2309–2322.

    Article  Google Scholar 

  • Nekhoroshev, V.P., “Precambrian” of Altai and Age of the Irtysh Metamorphic Complex, Zap. Vses. Mineral. O-va, 1939, vol. 68, no. 3.

  • Nekhoroshev, V.P., Geologiya SSSR. Vostochnyi Kazakhstan (USSR Geology. East Kazakhstan), Moscow: Nedra, 1967, vol. 1.

    Google Scholar 

  • Nesbitt, H.W. and Yong, G.M., Early Proterozoic Climates and Plate Motions Inferred from Major Element Chemistry of Lutites, Nature, 1982, vol. 299, pp. 715–717.

    Article  Google Scholar 

  • Patino, Douce, A.E. and Jonston, A.D., Phase Equilibria and Melt Productivity in the Pelitic System: Implications for the Origin of Peraluminous Granitoids and Aluminous Granulites, Contrib. Mineral. Petrol., 1991, vol. 107, pp. 202–218.

    Article  Google Scholar 

  • Pettijohn, P., Potter, P., and Siever, R., Sands and Sandstones, Oxford: Blackwell, 1973.

    Google Scholar 

  • Rapp, R.P. and Watson, E.B., Partial Melting of Amphibolite/Eclogite and the Origen of Archean Trondhjemites and Tonalites, Precambrian Res., 1991, vol. 51, pp. 1–25.

    Article  Google Scholar 

  • Rollinson, H.R., Using Geochemical Data: Evaluation, Presentation, Interpretation Essex: London Group UK Ltd, 1994.

    Google Scholar 

  • Rotarash, I.L., Samygin, S.G., and Gredyushko, E.A., Devonian Active Continental Margin at the Southwestern Altai, Geotektonika, 1982, no. 1, pp. 44–59.

  • Rudnick, R.L. and Fountain, D.M., Nature and Composition of the Continental Crust: a Lower Crustal Perspective, Rev. Geophys., 1995, vol. 33, pp. 267–309.

    Article  Google Scholar 

  • Sengör, A.M.C., Natal’in, B.A., and Burtman, V.S., Evolution of the Altaid Tectonic Collage and Palaeozoic Crustal Growth in Eurasia, Nature, 1993, vol. 364, no. 6435, pp. 299–307.

    Article  Google Scholar 

  • Shulikov, E.S., Geologo-metallogenicheskie osobennosti tsentral’noi chasti Yuzhnogo Altaya (Geological-Metallogenic Features of the Central Southern Altai), Kazan: Kazan. Univ., 1980.

    Google Scholar 

  • Skjerlie, K.P. and Patino Douce, A.E., Anatexis of Interlayered Amphibolite and Pelite at 10 Kbar: Effect of Diffusion of Major Components on Phase Relations and Melt Fraction, Contrib. Mineral. Petrol., 1995, vol. 122, pp. 62–78.

    Article  Google Scholar 

  • Tauson, L.V., Geokhimicheskie tipy i potentsial’naya rudonosnost’ granitoidov (Geochemical Types and Ore Potential of Granitoids), Moscow: Nauka, 1977.

    Google Scholar 

  • Taylor, S.R. and McLennan, S.M., The Continental Crust: Its Composition and Evolution. Blackwell:, Oxford: Press, 1985.

    Google Scholar 

  • Turkina, O.M., Modeling Geochemical Types of Tonalite-Trondhjemite Melts and Their Natural Equivalents, Geochem. Int., 2000, vol. 38, no. 7, pp. 640–651.

    Google Scholar 

  • Vasil’eva, V.I., Srednepaleozoiskie kristallicheskie slantsy i gneisy Irtyshskoi zony smyatiya (Middle Paleozoic Crystalline Schists and Gneisses of the Irtysh Folding Zone), Tr. VSEGEI, Nov, Ser. Petrogr., 1962, vol. 74, no. 5.

  • Vielzeuf, D. and Holloway, J.R., Experimental Determination of the Fluid-Absent Melting Relations in Politic System, Contrib. Mineral. Petrol., 1988, vol. 98, pp. 257–276.

    Article  Google Scholar 

  • Vladimirov, V.G., Metamorphic and Chemical Features of Garnets from the Irtysh Folding Zone, in Kriterii otsenki evolyutsii parametrov metamorfizma (Criteria of Estimating of the Evolution of Metamorphic Parameters), Tr. Inst. Geol. Geofiz. Sib. Otd. Akad. Nauk SSSR Novosibirsk: Nauka, 1990, vol. 731, pp. 24–39.

    Google Scholar 

  • Vladimirov, A.G., Kruk, N.N., Rudnev, S.N., et al., Geodynamics and Granitoid Magmatism of Collisional Orogens, Russ. Geol. Geophys., 2003, vol. 44, no. 12, pp. 1275–1292.

    Google Scholar 

  • Vladimirov, A.G., Kruk, N.N., Khromykh, S.V., et al., Permian Magmatism and Lithospheric Deformation in the Altai Caused by Crustal and Mantle Thermal Processes, Russ. Geol. Geophys., 2008, vol. 49, no. 7, pp. 468–479.

    Article  Google Scholar 

  • Volkova, N.I., Tarasova, E.N., Polyanskii, N.V., et al., High-Pressure Rocks in the Serpentinite Mélange of the Chara Zone, Eastern Kazakhstan: Geochemistry, Petrology, and Age, Geochem. Int., 2008, vol. 46, no. 4, pp. 386–401.

    Article  Google Scholar 

  • Wilson, M., Igneous Petrogenesis, London: Unwin Hyman, 1989.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. L. Kuibida.

Additional information

Original Russian Text © M.L. Kuibida, N.N. Kruk, N.I. Volkova, P.A. Serov, T.A. Velivetskaya, 2012, published in Petrologiya, 2012, Vol. 20, No. 2, pp. 208–224.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuibida, M.L., Kruk, N.N., Volkova, N.I. et al. Composition, sources, and genesis of granitoids in the Irtysh Complex, Eastern Kazakhstan. Petrology 20, 188–203 (2012). https://doi.org/10.1134/S0869591112020026

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0869591112020026

Keywords

Navigation