Skip to main content
Log in

Redox problems in the “metallogenic specialization” of magmatic rocks and the genesis of hydrothermal ore mineralization

  • Published:
Petrology Aims and scope Submit manuscript

Abstract

Considering the history and current state of the problem of the so-called metallogenic specialization of magmatic rocks, the paper places emphasis onto various aspects of the genesis of ore mineralization depending on the redox state of magmas (as a logical continuation of S. Ishihara’s works), fluids, and host rocks. These problems were inadequately poorly explored and discussed by researchers dealing with ore deposits. Various possible variants of ore-forming redox processes for different types of mineral deposits, with ore mineralization affiliated to granites (Ta, Sn, W, Mo, and Be) and mafic magmas (Au, Ag, U, Cu, Zn, Pb, As, Sb, and Hg) and, accordingly, to crustal and mantle origin, are discussed. On the basis of analyzed geological data, including those published over the past three decades, it is shown that the redox state of ore-producing magmas commonly significantly impacted not only the ore potential of magmatic complexes but also the genetic type of the ore mineralization. The redox state of the fluids predetermined the transport and precipitation speciation of metals. Influence mechanisms of hydrocarbons from sedimentary country rocks and gaseous products of their pyrolysis on ore deposition of various metals are considered. Understanding these mechanisms can be helpful for predicting the possible precipitation sites of ore mineralization of noble, radioactive, and chalcophile metals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alderton, D.H.M. and Brameld, F.C., Telluride Mineralization at the Svetloe Gold Prospect, Khabarovsk Kray, Eastern Russia, in Proceedings of IGCP-486 Field Workshop on Au-Ag-Telluride-Selenide Deposits, Izmir: Dokuz Yelul Univ., 2006, pp. 1–5.

    Google Scholar 

  2. Aleksandrov, S.M., Barsukov, V.L., and Shcherbina, V.V., Geokhimiya endogennogo bora (Geochemistry of Endogenous Boron), Moscow: Nauka, 1968.

    Google Scholar 

  3. Aleshin, A.P., Velichkin, V.I., and Krylova, T.L., Genesis and Formation Conditions of Deposits in the Unique Strel’tsovka Molybdenum-Uranium Ore Field: New Mineralogical, Geochemical, and Physic ochemical Evidence, Geol. Rudn. Mestorozhd., 2007, vol. 49, no. 5, pp. 446–470 [Geol. Ore Dep. (Engl. Transl.), vol. 49, no. 5, pp. 392–412].

    Google Scholar 

  4. Barnes, H.L., Solubility of Ore Minerals, in Geochemistry of Hydrothermal Ore Deposits, New York: Wiley, 1979, pp. 404–460.

    Google Scholar 

  5. Barsukov, V.L., Osnovnye cherty geokhimii olova (Principal Features of Tin Geochemistry), Moscow: Nauka, 1974.

    Google Scholar 

  6. Barsukov, V.L., Bakulin, Yu.I., Volosov, A.G., Garanin, A.V., and Usanov, G.E., Geodynamic and Petrochemical Principles of Predicting the Ore Potential of the Far East, Geokhimiya, 1985, no. 8, pp. 1078–1089.

  7. Barton, P.B., Jr. Possible Role of Organic Matter in the Precipitation of the Mississippi Valley Ores, Econ. Geol. Monograph, 1967, vol. 3, pp. 371–378.

    Google Scholar 

  8. Bastos Neto, A.C., Pereira, V.P., Ronchi, L.H., de Lima, E.F., and Frantz, J.C., The World Class Sn, Nb, Ta, F (Y, REE, Li) Deposit and the Massive Cryolite Associated with the Albite-Enriched Facies of the Madeira A-type Granite, Pitinga Mining District, Amazonas State, Brazil, Can. Mineral., 2009, vol. 47,pt. 6, pp. 1329–1357.

    Article  Google Scholar 

  9. Belov, N.V., Ocherki po strukturnoi mineralogii (Essays on Structural Mineralogy), Moscow: Nedra, 1976.

    Google Scholar 

  10. Beskin, S.M., Grebennikov, A.M., and Matias, V.V., Khangilai Granite Pluton and Related Orlovka Tantalum Deposit in the Transbaikal Region, Petrologiya, 1994, vol. 2, no. 1, pp. 68–87.

    Google Scholar 

  11. Beus, A.A., Albitic Deposits in Genezis endogennykh rudnykh mestorozhdenii., (Genesis of Endogenous Ore Deposits) V.I. Smirnov, Ed., Moscow: Nedra, 1968, pp. 303–377.

    Google Scholar 

  12. Blevin, Ph.L., Redox and Compositional Parameters for Interpreting the Granitoid Metallogeny of Eastern Australia: Implications for Gold-Rich Ore Systems, Resour. Geol., 2004, vol. 54, no. 3, pp. 241–252.

    Article  Google Scholar 

  13. Borsuk, A.M., Mezozoiskie i kainozoiskie magmaticheskie formatsii Bol’shogo Kavkaza (Mesozoic and Cenozoic Magmatic Associations in the Greater Caucasus), Moscow: Nauka, 1979.

    Google Scholar 

  14. Bulynnikov, A.Ya., Gold-Bearing Formations and Gold Provinces of the Altai-Sayan Mountain System, Tr. Tomsk. Gos. Univ., Ser. Geol., 1948, vol. 102, p. 298.

    Google Scholar 

  15. Burnham, C.W. and Ohmoto, H., Late-Stage Processes of Felsic Magmatism, in Granitic Magmatism and Related Mineralization, Mining Geol., Sp. Iss., 1980, no. 8, pp. 1–11.

  16. Buryak, V.A., Metamorfizm i rudoobrazovanie (Metamorphism and Ore Formation), Moscow: Nedra, 1982.

    Google Scholar 

  17. Candela, Ph.A.. and Holland, H.D., The Partitioning of Copper and Molybdenum between Silicate Melts and Aqueous Fluids, Geochim. Cosmochim. Acta, 1984, vol. 48, no. 2, pp. 373–380.

    Article  Google Scholar 

  18. Chappel, B.W. and White, A.J.R., Two Contrasting Granite Types, Pacific Geology, 1975, no. 8, pp. 173–174.

  19. Cook, N.J., Ciobanu, C.L., Spry, P., and Voudouris, P., Understanding Gold-(Silver)-Telluride-(Selenide) Mineral Deposits, Episodes, 2009, vol. 32, no. 4, pp. 249–263.

    Google Scholar 

  20. Dubrovskii, V.N. and Kigai, I.N., Zoning of Tin Deposits, in Zonal’nost’ gidrotermal’nykh rudnykh mestorozhdenii (Zoning of Hydrothermal Ore Deposits), Moscow: Nauka, 1974, vol. 1, pp. 19–88.

    Google Scholar 

  21. Durasova, N.A., Ryabchikov, I.D., and Barsukov, V.L., Redox Potential and Behavior of Tin in Magmatic Systems, Geol. Rudn. Mestorozhd., 1986, no. 1, pp. 5–11.

  22. Epel’baum, M.B. and Salova, T.P., Distribution of Mo and W between Granitic Melt and Fluid, in Ocherki fiziko-khimicheskoi petrologii (Essays on Physicochemical Petrology), Moscow: Nauka, 1985, vol. 13, pp. 137–152.

    Google Scholar 

  23. Facca, G. and Tonani, F., The Selfsealing Geothermal Field, Bull. Volcanologique, 1967, vol. 30B, pp. 271–273.

    Article  Google Scholar 

  24. Frost, B.R., Mavrogenes, J.A., and Tomkins, A.G., Partial Melting of Sulfide Ore Deposits during Medium- and High-Grade Metamorphism, Can. Mineral., 2002, vol. 40, pp. 1–18.

    Article  Google Scholar 

  25. Gallagher, D., Albite and Gold, Albite and Gold, Econ. Geol., 1940, vol. 35, no. 6, pp. 698–736.

    Article  Google Scholar 

  26. Gammons, Ch.H., Yu, Y., and Williams-Jones, A.E., The Disproportionation of Gold (I) Chloride Complexes at 25 to 200°C, Geochim. Cosmochim. Acta, 1997, vol. 61, no. 10, pp. 1971–1983.

    Article  Google Scholar 

  27. Gavrilenko, V.V. and Panova, E.G., Regional Zoning of Hydrothermal-Metasomatic Rocks and Tin Mineralization in the Amur Region, Dokl. Akad. Nauk, 1995, vol. 341, no. 5, pp. 658–660.

    Google Scholar 

  28. Geodinamika, magmatizm i metallogeniya Vostoka Rossii (Geodynamics. Magmatism, and Metallogeny of East Russia), Khanchuk, A.I,, Ed., Vladivostok: Dal’nauka, 2006.

    Google Scholar 

  29. Germanov, A.I., Geochemical Significance of Organic Matter in the Hydrothermal Process, Geokhimiya, 1965, no. 7, pp. 834–843.

  30. Heinrich, C.A., The Chemistry of Hydrothermal Tin (-Tungsten) Ore Deposition, Econ. Geol., 1990, vol. 85, no. 3, pp. 453–481.

    Article  Google Scholar 

  31. Heinrich, Ch. and Eadington, P., Thermodynamic Predictions of the Hydrothermal Chemistry of Arsenic and Their Significance for the Paragenetic Sequence of Some Cassiterite-Arsenopyrite-Base Metal Sulfide Deposits, Econ. Geol., 1986, vol. 81, no. 3, pp. 511–529.

    Article  Google Scholar 

  32. Hemley, J.J., A Study of Lead Sulfide Solubility and Its Relation to Ore Deposition, Econ. Geol., 1953, vol. 48, no. 2, pp. 113–138.

    Article  Google Scholar 

  33. Indolev, L.N., Lir, Yu.V., and Marin, Yu.B., On Sequence of Magmatic Processes and Ore Deposition in the Deputatsky Ore Cluster, in Usloviya obrazovaniya i zakonomernosti razmeshcheniya poleznykh iskopaemykh (Conditions of Formation and Tendencies in Mineral Distribution), Leningrad: LGI, 1971, pp. 58–73.

    Google Scholar 

  34. Ishihara, S., The Granitoid Series and Mineralization, Econ. Geol., 75th Anniversary Volume, 1981, pp. 458–484.

  35. Ishihara, S., The Magnetite-Series and Ilmenite-Series Granitic Rocks, Mining Geol, 1977, vol. 27, pp. 293–305.

    Google Scholar 

  36. Ivanova, G.F. and Butuzova, E.G., Pecularity of Tungsten, Tin, and Molybdenum Distribution in the Granites of Eastern Transbaikalia, Geokhimiya, 1968, no. 6, pp. 689–698.

  37. Ivanova, G.F. and Khodakovskii, I.L., On State of Tungsten in Hydrothermal Solutions, Geokhimiya, 1972, no. 11, pp. 1426–1433.

  38. Izokh, E.P., Otsenka rudonosnosti granitoidnykh formatsii v tselyakh prognozirovaniya (Estimation of the Ore Potential of Granitoid Formations for Forecasting Purposes), Moscow: Nedra, 1978.

    Google Scholar 

  39. Jiang, S.-Y., Palmer, M.R., Slack, J.F., and Shaw, D.R., Paragenesis and Chemistry of Multistage Tourmaline Formation in the Sullivan Pb-Zn-Ag Deposit, British Columbia, Econ. Geol., 1998, vol. 93, no. 1, pp. 47–67.

    Article  Google Scholar 

  40. Jugo, P.J., Wilke, M., and Botcharnikov R.E. Sulfur K-Edge XANES Analysis of Natural and Synthetic Basaltic Glasses: Implications for S Speciation and S Content as a Function of Oxygen Fugacity, Geochim. Cosmochim. Acta, 2010, vol. 74, no. 20, pp. 5926–5938.

    Article  Google Scholar 

  41. Kadik, A.A., Mantle-Derived Reduced Fluids: Relationship to the Chemical Differentiation of Planetary Matter, Geokhimiya, 2003, no. 9, pp. 928–940 [Geochem. Int. (Engl. Transl.), vol. 41, no. 9, pp. 844–855].

  42. Khitarov, N.I., Malinin, S.D., Lebedev, E.S., and Shibaeva, N.P., Distribution of Zn, Cu, Pb, and Mo between Fluid Phase and Silicate Melt of Granitic Composition at High Temperatures and Pressures, Geokhimiya, 1982, no. 8, pp. 1094–1107.

  43. Kigai, I.N. and Tagirov, B.R., Evolution of Acidity of Hydrothermal Fluids Related to the Hydrolysis of Chlorides, Petrologiya, 2010, no. 3, pp. 270–281 [Petrology (Engl. Transl.), no. 3, pp. 252–262].

  44. Kigai, I.N., Lifudzinskoe olovorudnoe mestorozhdenie i nekotorye voprosy gidrotermal’nogo mineraloobrazovaniya (Lifudzin Tin Deposit and Some Problems of Hydrothermal Mineral-Forming Processes), Moscow: Nauka, 1966.

    Google Scholar 

  45. Kigai, I.N., Genesis of Granite-Related Hydrothermal Deposits of Base and Rare Metals, Extended Abstract of Doctoral (Geol.-Miner.) Dissertation, Moscow: IGEM RAN, 1989.

    Google Scholar 

  46. Kigai, I.N., On the Pulsed Theory and Criteria of Staged Hydrothermal Mineral Formation, in Zonal’nost’ gidrotermal’nykh rudnykh mestorozhdenii (Zoning of Hydrothermal Ore Deposits), Moscow: Nauka, 1974, vol. 2, pp. 164–195.

    Google Scholar 

  47. Kigai, I.N., The Problem of Water Sources and Ore-Forming Material for the Deposits of Tin and Other Metals and Models of Hydrothermal Ore Formation, in Istochniki rudnogo veshchestva i usloviya lokalizatsii olovorudnykh mestorozhdenii (Sources of Ore Material and Conditions of Localization of Tin Deposits), Moscow: Nauka, 1984, pp. 93–103.

    Google Scholar 

  48. Koptev-Dvornikov, V.S., Grigor’ev, Iv.F., Dolomanova, E.I., Dmitriev, L.V., Negrei, E.V., Polkvoi, O.S., Rub, M.G., Smorchkov, I.E., and Shipulin, F.K., Intrusions of Shallow-Depth Granitic Formation, Behavior of Trace Elements in Their Rocks, and Criteria for Their Genetic Relations with Ore Formation, in Magmatizm i svyaz’ s nim poleznykh iskopaemykh (Magmatism and Related Mineral Resources), Moscow: Gosgeoltekhizdat, 1960, pp. 165–194.

    Google Scholar 

  49. Kovalenko, V.I., Estimation of Sn (II) and Sn(IV) Partition Coefficients in the Magmatic Systems and Relation with Their Ore Potential, Dokl. Akad. Nauk SSSR, 1988, vol. 299, no. 6, pp. 1473–1477.

    Google Scholar 

  50. Kuznetsov, A.D. and Epel’baum, M.B., Evtekticheskie sootnosheniya v otkrytykh sistemakh s vpolne podvizhnymi komponentami (Eutectic Relationships in Open Systems with Perfectly Mobile Components), Moscow: Nauka, 1985.

    Google Scholar 

  51. Kuznetsov, Yu.A., Main Principal Relations in the Tectonic Localization and Classification of Magmatic Associations, in Magmatizm i svyaz’ s nim poleznykh iskopaemykh (Magmatism and Related Mineral Resources), Moscow: Gosgeoltekhizdat, 1960, pp. 93–103.

    Google Scholar 

  52. Lang, J.R., Baker, T., Hart, C.J.R., and Mortensen, J.K., An Exploration Model for Intrusion-Related Gold Systems, SEG Newslett., 2000, vol. 40, p. 15.

    Google Scholar 

  53. Lishnevskii, E.N. and Beskin, S.M., Anomalous Magnetic Field as a Factor of Metallogenic Zoning of a Territory with Granite-Related Ore Mineralization, Byull. Mosk. O-va Ispyt. Prir., Otd. Geol, 1994, no. 5, pp. 103–115.

  54. Lovering, T.S., Sulfide Ores Formed from Sulfide-Deficient Solutions, Econ. Geol., 1961, vol. 56, no. 1, pp. 68–99.

    Article  Google Scholar 

  55. Lowenstern, J.B. and Sinclair, W.D., Exsolved Magmatic Fluid and Its Role in the Formation of Comb-Layered Quartz at the Cretaceous Logtung W-Mo Deposit, Yukon Territory, Canada, Trans. R. Soc. Edinburgh, Earth Sci, 1996, vol. 87, pp. 291–303.

    Google Scholar 

  56. Lyakhovich, V.V., Vol’framonosnye granity (Tungsten-Bearing Granites), Moscow: Nauka, 1989.

    Google Scholar 

  57. Lyakhovich, V.V., Accumulation Coefficient as Indicator of Ore-Generating Ability of Granitoids, Geol. Rudn. Mestorozhd., 1974, no. 6, pp. 18–26.

  58. Malinin, S.D. and Kravchuk, I.F., Inter-Phase Distribution of Elements in the Magmatic Melt-Fluid Equilibrium and Problems of Ore- and Petrogenesis, in Magmatizm, flyuidy i orudenenie (Magmatism, Fluids, and Mineralization), Vladivostok: DVO RAN, 1990, pp. 12–25.

    Google Scholar 

  59. Manning, A.C. and Henderson, P., The Behavior of Tungsten in Granitic Melt-Vapour Systems, Contrib. Mineral. Petrol., 1984, vol. 86, no. 3, pp. 286–293.

    Article  Google Scholar 

  60. Melent’ev, B.N., Ivanenko, V.V., and Pamfilova, L.A., Rastvorimost’ nekotorykh rudoobrazuyushchikh sul’fidov v gidrotermal’nykh usloviyakh (Solubility of Some Ore-Forming Sulfides under Hydrothermal Conditions), Moscow: Nauka, 1968.

    Google Scholar 

  61. Nekrasov, I.Ya., Olovo v magmaticheskikh i postmagmaticheskikh protsessakh (Tin in Magmatic and Post-Magmatic Processes), Moscow: Nauka, 1984.

    Google Scholar 

  62. Nekrasov, I.Ya., Epel’baum, M.B., and Sobolev, V.P., Study of the Model Granite-SnO (SnO2) Fluid System. Dependence of Tin Content in Quartz-Albite Melt on \(f_{O_2 }\) Dokl. Akad. Nauk SSSR, 1979, vol. 247, no. 3, pp. 696–699.

    Google Scholar 

  63. Nekrasov, I.Ya., Epel’baum, M.B., and Sobolev, V.P., Tin Distribution between Melt and Chloride Fluid in the Granite-SnO (SnO2)-Fluid, Dokl. Akad. Nauk SSSR, 1980, vol. 252, no. 4, pp. 977–981.

    Google Scholar 

  64. Novikova, M.I., Shpanov, E.P., and Kupriyanova, I.I., Petrography of the Ermakoskoe Beryllium Deposit, Western Transbaikal Region, Petrologiya, 1994, vol. 2, no. 1, pp. 114–127.

    Google Scholar 

  65. Ohmoto, H. and Goldhaber, M.B., Sulfur and Carbon Isotopes, in Geochemistry of Hydrothermal Ore Deposits, Barnes, H.L., Ed., New York: Wiley & Sons, 1997, pp. 517–611.

    Google Scholar 

  66. Ol’shanskii, Ya.I. and Ivanenko, V.V., Mekhanizm perenosa veshchestv pri obrazovanii gidrotermal’nykh mestorozhdenii sul’fidov (eksperimental’noe issledovanie) (Mechanism of Material Transfer during the Formation of Hydrothermal Sulfide Deposits: Experimental Data), Tr. Inst. Geol. Rudn. Mestorozhd. Petrogr. Mineral. Geokhim. Akad. Nauk SSSR, 1958, vol. 16.

  67. Panova, E.G., Gavrilenko, V.V., and Luchitskaya, M.I., Chemical Evolution of Metasomatites during Formation of the Pravourmiiskoe Tin Deposit, Geokhimiya, 1993, no. 5, pp. 743–753.

  68. Pecherskii, D.M., Statistical Analysis of Causes of Different Magnetization of the Granitoids of the Verkhoyansk-Chukotka Folded Area and the Okhotsk-Chukotka Volcanogenic Belt, Izv. Akad. Nauk SSSR, Ser. Geol., 1963, no. 11, pp. 51–65.

  69. Plotinskaya, O.Yu., Groznova, E.O., Kovalenker, V.A., Novoselov, K.A., and Zeltmann, R., Mineralogy and Formation Conditions of Ores in the Bereznyakovskoe Ore Field, the Southern Urals, Russia, Geol. Rudn. Mestorozhd., 2009, vol. 51, no. 5, pp. 414–443 [Geol. Ore Dep. (Engl. Transl.), vol. 51, no. 5, pp. 371–397].

    Google Scholar 

  70. Plyusnina, L.P., Kuz’mina, T.V., and Safronov, P.P., Bitumen-Graphite Transformation (Data of Experimental Modeling), Dokl. Akad. Nauk, 2009, vol. 425, no. 1, pp. 94–97 [Dokl. Earth Sci. (Engl. Transl.), vol. 425, no. 1, pp. 307–310].

    Google Scholar 

  71. Povilaitis, M.M., Rhythmic Zoning of Some Granitoid Bodies, Izv. Akad. Nauk SSSR, Ser. Geol., 1961, no. 2, pp. 35–49.

  72. Prokof’ev, V.Yu., Bortnikov, N.S., Kovalenker, V.A., Vinokurov, S.F., Zorina, L.D., Chernova, A.D., Kryazhev, S.G., Krasnov, A.N., and Gorbacheva, S.A., The Darasun Gold Deposit, Eastern Transbaikal Region: Chemical Composition, REE Patterns, and Stable Carbon and Oxygen Isotopes of Carbonates from Ore Veins, Geol. Rudn. Mestorozhd., 2010, vol. 52, no. 2, pp. 91–125 [Geol. Ore Dep. (Engl. Transl.), vol. 52, no. 2, pp. 81–113].

    Google Scholar 

  73. Raimbault, L., Cuney, M., Azencott, C., Duthou, J.-L., and Joron, J.-L., Geochemical Evidence for a Multistage Magmatic Genesis of Ta-Sn-Li Mineralization in the Granite at Beauvoir, French Massif Central, Econ. Geol., 1995, vol. 90, no. 3, pp. 548–576.

    Article  Google Scholar 

  74. Reif, F.G., Alkaline Granites and Be (Phenakite-Bertrandite) Mineralization: An Example of the Orot and Ermakovka Deposits, Geokhimiya, 2008, no. 3, pp. 243–263 [Geochem. Int. (Engl. Transl.), no. 3, pp. 213–232].

  75. Reif, F.G., Seltmann, R., and Zaraisky, G.P., The Role of Magmatic Processes in the Formation of Banded Li, F-Enriched Granites from the Orlovka Tantalum Deposit, Transbaikalia, Russia: Microthermometric Evidence, Can. Mineral., 2000, vol. 38, pt. 4, 915–936.

    Article  Google Scholar 

  76. Relvas, J.M.R.S., Barriga, J.A.S., Ferreira, A., Noiva, P.C., Pacheco, N., and Barriga, G., Hydrothermal Alteration and Mineralization in the Neves-Corvo Volcanic-Hosted Massive Sulfide Deposit, Portugal. I. Geology, Mineralogy, and Geochemistry, Econ. Geol., 2006, vol. 101, no. 4, pp. 753–790.

    Article  Google Scholar 

  77. Ryabchikov, I.D., and Kogarko, L.N., Redox Potential of Mantle Magmatic Systems, Petrologiya, 2010, vol. 18, no. 3, pp. 257–269 [Petrology (Engl. Transl.), vol. 425, no. 1, pp. 307–310].

    Google Scholar 

  78. Ryabchikov, I.D., Orlova, G.P., Efimov, L.S., and Kalenchuk, G.E., Copper in the Granite-Fluid System, Geokhimiya, 1980, no. 9, pp. 1320–1327.

  79. Ryabchikov, I.D., Rekharskii, V.I., and Kudrin, A.V., Mobilization of Molybdenum by Magmatic Fluids in the Course of Crystallization of Granite Melts, Geokhimiya, 1981, no. 8, pp. 1243–1246.

  80. Salova, T.P., Orlova, G.P., Kravchuk, I.F., Epel’baum, M.B., Ryabchikov, I.D., and Malinin, S.D., On the Problem of the Experimental Determination of Molybdenum Partition Coefficients between Silicate Melt and Aqueous-Salt Fluids, Geokhimiya, 1989, no. 2, pp. 267–273.

  81. Schutte, J. and De Boer, J.L., Valence Fluctuations in the Incommensurably Modulated Structure of Calaverite AuTe2, Acta Crystallogr., 1988, vol. B44, no. 5, pp. 486–494.

    Google Scholar 

  82. Seward, T.M. and Barnes, H.L., Metal Transport by Hydrothermal Ore Fluids, in Geochemistry of Hydrothermal Ore Deposits, Barnes, H.L., New York: J. Willey & Sons, 1997, pp. 435–486.

  83. Seward, T.M., The Formation of Lead (II) Chloride Complexes to 300°C: A Spectrophotometric Study, Geochim. Cosmochim. Acta, 1984, vol. 48, no. 1, pp. 121–134.

    Article  Google Scholar 

  84. Seward, T.M., The Transport and Deposition of Gold in Hydrothermal Systems, in Gold’ 82. The Geology, Geochemistry, and Genesis of Gold Deposits, R.P. Foster, Ed., Balkema, 1982, pp. 165–181.

  85. Shcheglov, A.D., Tin Deposits and the Mantle, Global Tectonics and Metallogeny, 1991, vol. 4, nos. 1–2, pp. 69–74.

    Google Scholar 

  86. Sheremet, E.G. and Kozlov, V.D., Petrologiya, geokhimiya i rudonosnost’ granitoidov molibdenovogo poyasa Zabaikal’ya (Petrology, Geochemistry, and Ore Potential of the Molybdenum Belt in Transbaikalia), Novosibirsk: Nauka, 1981.

    Google Scholar 

  87. Sillitoe, R.H., Intrusion-Related Gold Deposits, in Metallogeny and Exploration of Gold, Foster, R.P., Ed., Glasgow: Blackie, 1991, pp. 165–209.

    Google Scholar 

  88. Takagi, T. and Tsukimura, K., Genesis of Oxidized- and Reduced-Type Granites, Econ. Geol., 1997, vol. 92, no. 1, pp. 81–86.

    Article  Google Scholar 

  89. Takahashi, M., Aramaki, S., and Ishihara, S., Magnetite-Series / Ilmenite-Series vs. I-Type / S-Type Granitoids, in Granitic Magmatism and Related Mineralization. Mining Geol. Spec. Iss., 1980, no. 8, pp. 13–28.

  90. Tauson, L.V. and Studenikova, Z.V., Tendencies in the Distribution of Lead, Zinc, and Molybdenum in Igneous Rocks, in Geokhimiya redkikh elementov (Trace-Element Geochemistry), Moscow: Akad. Nauk SSSR, 1959, pp. 64–76.

    Google Scholar 

  91. Tomkins, A.G., Pattison, D.R.M., and Frost, B.R., On the Initiation of Metamorphic Sulfide Anatexis, J. Petrol., 2007, vol. 48, no. 3, pp. 511–535.

    Article  Google Scholar 

  92. Tornos, F., Environment of Formation and Styles of Volcanogenic Massive Sulfides: The Iberian Pyrite Belt, Ore Geol. Rev., 2006, vol. 28, no. 3, pp. 259–307.

    Article  Google Scholar 

  93. Tossell, J.A., The Speciation of Gold in Aqueous Solutions: A Theoretical Study, Geochim. Cosmochim. Acta, 1996, vol. 60, no. 1, pp. 17–29.

    Article  Google Scholar 

  94. Treadwell, W.D. and Hepenstrick, H., Über die Löslichkeit von Silbersulfid, Helv. Chim. Acta, 1940, vol. 32, no. 6, pp. 1872–1879.

    Google Scholar 

  95. Troshin, Yu.P., Grebenshchikova, V.I., and Boiko, S.M., Geokhimiya i petrologiya redkometal’nykh plyumazitovykh granitov (Geochemistry and Petrology of the Rare-Metal Plumasite Granites), Novosibirsk: Nauka, 1983.

    Google Scholar 

  96. Tunell, G. and Murata, K.J., The Atomic Arrangement and Chemical Composition of Krennerite, Am. Mineral., 1950, vol. 35, nos. 11/12, pp. 959–984.

    Google Scholar 

  97. Tunnel, G. and Pauling, L., The Atomic Arrangement and Bonds of the Gold-Silver Ditellurides, Acta Crystallogr., 1952, vol. 5, pp. 375–381.

    Article  Google Scholar 

  98. Ulrich, T. and Mavrogenes, J., An Experimental Study of the Solubility of Molybdenum in H2O and KCl-H2O Solutions from 500°C to 800°C, and 150 to 300MPa, Geochim. Cosmochim. Acta, 2008, vol. 72, no. 7, pp. 2316–2330.

    Article  Google Scholar 

  99. Voroshin, S.V., Mel’nik, V.G., and Tyukova, E.E., Regional Balance of Gold during Prograde Metamorphism in the Terrigenous Sequences of the Vorkhoyansk-Kolyma Region, in Tr. Vseross. Soveshch. Zolotoe orudenenie i granitoidnyi magmatizm Severnoi Patsifiki. Rudnaya mineralizatsiya i petrogenezis (Proc. All-Russ. Conf. Gold Mineralization and Granitoid Magmatism of the Northern Pacifics. Ore Mineralization and Petrogenesis), Magadan: SVKNII, vol. 2, 2000, pp. 175–185.

    Google Scholar 

  100. Wesolowski, D., Cramer, J.J., and Ohmoto, H., Scheelite Mineralization in Skarns Adjacent to Devonian Granitoids at King Island, Tasmania, in Proc. CIM Conference on Recent Advances in the Geology of Granite-Related Mineral Deposits, Taylor, R.P. and Strong, D.F., Eds., Can. Inst. Mining Met. Spec., 1985, sp. vol. 39, pp. 231–251.

  101. Zaraiskii, G.P., Chevychelov, V.Yu., Aksyuk, A.M., Korzhinskaya, V.S., Kotova, N.P., Red’kin, A.F., and Borodulin, G.P., Experimental Substantiation of Physicochemical Model of the Formation of Ta Deposits Related to the Li-F, in Eksperimental’nye issledovaniya endogennykh protsessov (Experimental Studies of Endogenous Processes), Chernogolovka: IEM RAN, 2008, pp. 86–109.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. N. Kigai.

Additional information

Original Russian Text © I.N. Kigai, 2011, published in Petrologiya, 2011, Vol. 19, No. 3, pp. 316–334.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kigai, I.N. Redox problems in the “metallogenic specialization” of magmatic rocks and the genesis of hydrothermal ore mineralization. Petrology 19, 303–321 (2011). https://doi.org/10.1134/S0869591111030052

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0869591111030052

Keywords

Navigation