Skip to main content
Log in

Microseismicity in the Persian Gulf and in the Zagros Mountain Massif according to OBS Observations

  • Published:
Journal of Volcanology and Seismology Aims and scope Submit manuscript

Abstract

OBS observations in the Persian Gulf during a short time span have revealed the occurrence of low magnitude (ML = –0.2–2.9) earthquakes with hypocenters in the mantle beneath the Gulf and beneath the Zagros Mountain Massif. A cross-section across the shoreline of the Persian Gulf shows the projections of these hypocenters beneath the Zagros Mountains to make inclined layers that dip northeast at a high angle into the mantle down to depths of 120‒180 km. The 3D distribution of large and moderate magnitude earthquakes based on an improved earthquake catalog as reported by the US Geological Survey and by the International Seismological Centre (ISC) is not at variance with the distribution of microearthquakes and low magnitude earthquakes but seems rather to supplement it, forming a separate seismic dipping layer. According to the data acquired by OBS observations, seismic activity occurs throughout the entire crust and upper mantle of the region rather than in the upper crustal layers only as was asserted in previous publications. It is possible that collision and accompanying phenomena (mantle seismicity and destruction of the granitic layer in the crust) are related to the hypothetical rotation of the Earth around the center of rotation placed at Cyprus Island.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. Abramov, V.Yu. and Aljabasini, H., Lithologic features in the stratigraphy and tectonic regionalization of the Zagros seismic foredeep within the Persian Gulf, Vestnik RUDN, Series Inzhen. Issl., 2019, vol. 20, no. 1, pp. 57‒65. journals.rudn.ru/engineering-researches. https://doi.org/10.22363/2312-8143-2019-20-1-57-65

  2. Adams, A., Brazier, R., Nyblade, A., Rodgers, A., Al-Amri, A., and DuBois, P.S., Source parameters for moderate earthquakes in the Zagros Mountains with implications for the depth extent of seismicity, Bull. Seismol. Soc. Amer., 2009, vol. 99, no. 3, pp. 2044‒2049.

    Article  Google Scholar 

  3. Aljabasini, H.M.D., The Geological Structure and Seismic Activity of the Petroleum Extraction Area, Cand. Sci. (Geol.-Mineral.) Dissertation, Moscow: GIN RAN, 2021. 120 p.

  4. Allen, M., Blanc, E., Walker, R., Jackson, J., Talebian, M., and Ghassemi, M., Contrasting styles of convergence in the Arabia-Eurasia collision: Why escape tectonics does not occur in Iran, Geol. Soc. Amer., 2006, Special Paper 409, pp. 579‒589.

  5. Allen, M., Jackson, J., and Walker, R., Late Cenozoic reorganization of the Arabia-Eurasia collision and the comparison of short-term and long-term deformation rates, Tectonics, 2004, vol. 23, TC2008. https://doi.org/10.1029/2003TC001530

    Article  Google Scholar 

  6. Allen, M.B., Saville, C., Blanc, E.J.-P., Talebian, M., and Nissen, E., Orogenic plateau growth: Expansion of the Turkish-Iranian Plateau across the Zagros fold-and-thrust belt, Tectonics, 2013, vol. 32, no. 2, pp. 171-190. https://doi.org/10.1002/tect.20025

    Article  Google Scholar 

  7. Bachmanov, D.M., Recent Tectonics and Geodynamics in the Central Outer Zagros (Southwestern Iran), Extended abstract of Cand. Sci. (Geol.-Mineral.) Dissertation, Moscow: GIN RAN, 2002. 24 p.

  8. Bachmanov D.M., Trifonov V.G., Hessami K. et al. Active faults in the Zagros and Central Iran, Tectonophysics, 2004, vol. 380, nos. 3–4, pp. 221–241. https://doi.org/10.1016/j.tecto.2003.09.0

    Article  Google Scholar 

  9. Baker, C., Jackson, J., and Priestley, K., Earthquakes on the Kazerun Line in the Zagros Mountains of Iran: Strike-slip faulting within a fold and thrust belt, Geophys. J. Int., 1993, vol. 115, pp. 41–61.

    Article  Google Scholar 

  10. Baza dannykh aktivnykh razlomov Evrazii (i prilegayushchikh akvatorii) (Database of Active Faults in Eurasia and Adjoining Water Areas), Moscow: GIN RAN, 2022. URL: http://neotec.ginras.ru/database.html. Last accessed October 20, 2022.

  11. Berberian, M. and King, G.C.P., Towards a paleo-geography and tectonic evolution of Iran, Can. J. Earth Sci., 1981, vol. 18, pp. 210–265.

    Article  Google Scholar 

  12. Bird, P., Finite element modeling of lithosphere deformation: the Zagros collision orogeny, Tectonophysics, 1978, vol. 50, pp. 307–336.

    Article  Google Scholar 

  13. Bird, P., Tokso, Z.M.N., and Sleep, N.H., Thermal and mechanical models of continent–continent convergence zones, J. Geophys. Res., 1975, vol. 32, pp. 4405–4416.

    Article  Google Scholar 

  14. Borisov, A.S., Broadband hydroacoustic observations of microseismic signals at the South Kuril Islands in 2011‒2012, in Sverkhshirokopolosnye signaly v radiolokatsii, svyazi i akustike (Very Broadband Signals in Radar, Communication, and Acoustics), Proc. IV All-Russia Science Conference, Murom: Murom Institute (a branch of the Federal State Budget Educational Institution of Higher Professional Education “Vladimir State University named after A.G. and N.G. Stoletovs”), 2013, pp. 34‒38.

  15. Casciello, E., Vergés, J., Saura, E., Casini, G., Fernández, N., Blanc, E., Homke, S., and Hunt, D.W., Fold patterns and multilayer rheology of the Lurestan Province, Zagros Simply Folded Belt (Iran), J. Geol. Soc., 2009, vol. 166, pp. 947‒959. https://doi.org/10.1144/0016-76492008-138

    Article  Google Scholar 

  16. CSEM, Euro-Med earthquakes. URL: https://www.emsc-csem.org/#2. Last accessed July 25, 2022.

  17. Dekhani, G. and Makris, J., The gravity field and crustal structure of Iran, Neues Jahrb. Geol. Paleontol. Abh., 1988, vol. 168, pp. 182‒207.

    Google Scholar 

  18. El-Isa, Z.H., Seismicity and seismotectonics of the Red Sea Region, Arab. J. Geosci., 2015, vol. 8, no. 10. https://doi.org/10.1007/s12517-015-1819-2

  19. EMAG2v3: Earth Magnetic Anomaly Grid (2-arc-minute resolution), URL: https://www.ncei.noaa.gov/access/metadata/landing-page/bin/iso?id=gov.noaa.ngdc.mgg.geophysical_models:EMAG2_V3. Last accessed October 25, 2022.

  20. Eppelbaum, L., Ben-Abraham, C., Kac, Yu., Kloting, S., and Kaban, M.K., A giant quasi-circular mantle structure in the Africa-Arabia junction zone: Data from geological and geophysical studies, Geotektonika, 2021, no. 1, pp. 66‒93. https://doi.org/10.31857/s0016853x21010057

  21. Heidari, R. and Mirzaei, N., The seismotectonic model of main recent fault between 33° and 35° N, J. Earth Space Phys., 2009, 35(3). www.researchgate.net/publication/287189169.

  22. Iranian Seismological Center. URL: http://irsc.ut.ac.ir/. Last accessed August 14, 2022.

  23. ISC. Bulletin: catalogue search. URL: http://www.isc.ac. uk/iscbulletin/search/catalogue/#reviewed. Last accessed September 23, 2022.

  24. Jackson, J. and McKenzie, D., The relationship between plate motion and seismic moment tensors, and the rates of active deformation in the Mediterranean and Middle East, Geophys. J. Royal Astron. Soc., 1988, vol. 93, pp. 45–73.

    Article  Google Scholar 

  25. Khain, V.E., On the paper “New data on the seismicity of the Middle Caspian Sea and their possible tectonic interpretation” by S.A. Kovachev, V.G. Kazmin, I.P. Kuzin, and L.I. Lobkovsky, L.I.”, Geotektonika, 2006, no. 6, pp. 90‒91.

  26. Kkallas, Ch., Papazachos, C.B., Boore, D., and Margaris, B.N., Historical intermediate-depth earthquakes in the southern Aegean Sea Benioff zone: modeling their anomalous macroseismic patterns with stochastic ground-motion simulations, Bull. Earthq. Eng., 2018, 16(2). https://doi.org/10.1007/s10518-018-0342-8

  27. Koronovsky, N.V., Bryantseva, G.V., Zhigalin, A.D., Arkhipova, E.V., and Anisimova, O.V., Recent structures and seismicity of Zagros, Vestnik MGU, Ser. 4, Geol., 2022, no. 5, pp. 9–18.

  28. Kovachev, S.A., Microseismicity in the Middle Carpian Sea as derived from seismological bottom observations, in Trudy Kaspiiskogo filiala IO RAN (Proc. Caspian Branch of IO RAS), Astrakhan, 2016, pp. 9‒37.

    Google Scholar 

  29. Kovachev, S.A. and Ganzha, O.Yu., Main results of studies in crustal structure for the Persian Gulf based on deep seismic sounding data, Okeanologiya, 2023, vol. 63, no. 5, pp. 1–16.

    Google Scholar 

  30. Kovachev, S.A. and Soloviev, S.L., Magnitude determination for microearthquakes based on seismological bottom observations, Fizika Zemli, 1996, vol. 32, no. 5, pp. 26‒30.

    Google Scholar 

  31. Kovachev, S.A., Kuzin, I.P., and Soloviev, S.L., Microseismicity of the frontal Hellenic Arc according to OBS observations, Tectonophysics, 1992, vol. 201, nos. 3‒4, pp. 317‒327.

    Article  Google Scholar 

  32. Kovachev, S.A., Kazmin, V.G., Kuzin, I.P., and Lobkovsky, L.I., New evidence for seismicity in the Middle Caspian Sea and a possible tectonic interpretation, Geotektonika, 2006, no. 5, pp. 50‒60.

  33. Kovachev, S.A., Kazmin, V.G., Kuzin, I.P., and Lobkovsky, L.I., New evidence for mantle seismicity beneath the Caspian region and its geological interpretation, Geotektonika, 2009, no. 3, pp. 30‒44.

  34. Kovachev, S.A., Krylov, A.A., Ganzha, O.Yu., and Yegorov, A.V., Deep seismic sounding of the crust in the Persian Gulf, in Sovremennye metody i sredstva okeanologicheskikh issledovanii (MSOI-2021) (Contemporary Methods and Instrumentation in Oceanological Research (MSOI-2021)), Proc. XVII Intern Science Conference, Moscow: Shirshov Institute of Oceanology RAS, 2021a, pp. 201‒204.

  35. Kovachev, S.A., Krylov, A.A., and Yegorov, A.V., Results of OBS observations in the Persian Gulf, in Sovremennye metody i sredstva okeanologicheskikh issledovanii (MSOI-2021) (Contemporary Methods and Instrumentation in Oceanological Research (MSOI-2021)), Proc. XVII Intern Science Conference, Moscow: Shirshov Institute of Oceanology RAS, 2021b, pp. 205‒208.

  36. Kovachev, S.A., Krylov, A.A., and Mironyuk, S.G., Seismic hazard assessment along the gas pipeline route in the Russian sector of the Black Sea using bottom seismological observations, 17th Conference and Exhibition Engineering and Mining Geophysics, 2021c, no. 17.

  37. Levchenko, D.G., Registratsiya shirokopolosnykh seismicheskikh signalov i vozmozhnykh predvestnikov sil’nykh zemletryasenii na morskom dne (Recording of Broadband Seismic Signals and Possible Precursors of Large Earthquakes on the Seafloor), Mocow: Nauchnyi Mir, 2005.

  38. Levin, B.V., Sasorova, E.V., and Borisov, S.A., Estimating the parameters of small earthquakes and their signals, J. Volcanol. Seismol., 2010, vol. 4, no. 3, pp. 203–212.

    Article  Google Scholar 

  39. Lukk, A.A. and Rebetsky, Yu.L., Recent geodynamics and focal mechanisms of earthquakes around the Bushehr NPP, Geofiz. Prots. Biosf., 2018, vol. 17, no. 3, pp. 90–108. https://doi.org/10.21455/GPB2018.3-6

    Article  Google Scholar 

  40. Maggi, A. and Priestley, K., Surface waveform tomography of the Turkish-Iranian plateau, Geophys. J. Int., 2005, vol. 160, pp. 1068–1080.

    Article  Google Scholar 

  41. Maggi, A., Jackson, J., Priestley, K., and Baker, C., A re-assessment of focal depth distributions in southern Iran, the Tien Shan and northern India: Do earthquakes really occur in the continental mantle? Int. J. Geophys., 2000, vol. 143, pp. 629–661.

    Article  Google Scholar 

  42. Makris, J. and Yegorova, T., A 3-D density–velocity model between the Cretan Sea and Libya, Tectonophysics, 2006, vol. 417, pp. 201–220.

    Article  Google Scholar 

  43. Montavalli-Anbaran, S.H., Zeyen, H., Brunet, M.-F., and Ardestani, V.E., Crustal and lithospheric structure of the Alborz Mountains, Iran, and surrounding areas from integrated geophysical modeling, Tectonics, 2011, vol. 30, TC5013. DOI: TC002934https://doi.org/10.1029/2011

  44. Neprochnov, Yu.P., Deep crustal structure beneath the Black Sea derived from seismic data, Byull. MOIP, Otdel. Geol., 1960, vol. 35, pp. 30‒35.

    Google Scholar 

  45. Neprochnov, Yu.P., Goncharova, V.P., and Neprochnova, A.F., Seismic data on crustal structure in the central Black Sea, Dokl. Akad. Nauk SSSR, 1959, vol. 129, no. 2, pp. 408‒411.

    Google Scholar 

  46. Nissen, E., Tatar, M., Jackson, J., and Allen, M., New views on earthquake faulting in the Zagros fold-and-thrust belt of Iran, Geophys. J. Int., 2011, vol. 186, no. 3, pp. 928–944. https://doi.org/10.1111/j.1365-246X.2011.05119.x

    Article  Google Scholar 

  47. Nowroozi, A.A., Seismotectonics of the Persian plateau, eastern Turkey, Causasus, and Hindu Kush regions, Bull. Seismol. Soc. Am., 1971, vol. 61, no. 2, pp. 317–341.

    Google Scholar 

  48. Papazachos, B.C. and Papaioannou, Ch.A., Lithospheric boundaries and plate motions in the Cyprus area, Tectonophysics, 1999, vol. 308, no. 1, pp. 193–204.

    Article  Google Scholar 

  49. Papazachos, B.C., Dimitriadis, S.T., Panagiotopoulos, D.G., and Papadimitriou, E., Deep structure and active tectonics of the Southern Aegean Volcanic arc, Developments in Volcanology, 2005, vol. 7, pp. 47‒64.

    Article  Google Scholar 

  50. Paul, A., Hatzfeld, D., Kaviani, A., Tatar, M., and Péquegnat, C., Seismic imaging of the lithospheric structure of the Zagros, Geological Society, London. Special Publications, 2010, vol. 330, pp. 5‒18. https://doi.org/10.1144/SP330.2

    Article  Google Scholar 

  51. Piip, V.B. and Ermakov, A.P., The oceanic crust in the Black Sea basin derived from seismic data, Vestnik MGU, Ser. 4, Geol., 2011, no. 5, pp. 61‒68.

  52. Piip, V.B., Rodnikov, A.G., and Buvaev, N.A., A study of deep lithosphere structure along the Caucasus-South Caspian Basin-Apsheron Step-Middle Caspian Basin-Turanian plate seismic traverse, Vestnik MGU, Ser. 4, Geol., 2012, no. 2, pp. 45‒51.

  53. Pollac, H.N., Hurter, S.J., and Johnson, J.R., Heat flow from the Earth’s interior: Analysis of the global data set, Earth Planet Sci. Lett., 1993, vol. 244, nos. 1‒2, pp. 285‒301. https://doi.org/10.1029/93RG01249

  54. Rebetsky, Yu.L., Lukk, A.A., Tatevosyan, R.E., and Bykova, V.V., Determining focal mechanisms of weak earthquakes and the contemporary geodynamics of southern Iran, Geodynamics & Tectonophysics, 2017, vol. 8, no. 4, pp. 971–988.

  55. Rostam, G.G., Sakhaei, S.R., and Ebadati, N., Geodynamic and tectonic setting of Oman Line in south of Iran, Amer. J. Geophysics, Geochemistry and Geosystems, 2016, vol. 2, no. 5, pp. 64‒73. https://doi.org/aiscience.org/journal/aj3g

  56. Sasorova, E.V., Levin, B.W., and Morozov, V.E., Hydro-seismic-acoustical monitoring of submarine earthquakes preparation: observations and analysis, Adv. Geosci., 2008, vol. 14, pp. 99–104. https://doi.org/adv-geosci.net/14/99/2008/

    Google Scholar 

  57. Shahvar, M.P., Zare, M., and Castellaro, S., A unified seismic catalog for the Iranian Plateau (1900–2011), Seismol. Res. Lett., 2013, vol. 84, no. 2, pp. 233–249.https://doi.org/10.1785/0220120144

  58. Şengör, A.M.C. and Kidd, W.S.F., Postcollisional tectonics of the Turkish-Iranian plateau and a comparison with Tibet, Tectonophysics, 1979, vol. 55, pp. 361–376.

    Article  Google Scholar 

  59. Solov’ev, S.L., Kovachev, S.A., Kuzin, I.P., and Tassos, S., Seismicity of the crust of the Aegean Sea from sea bottom seismological observations, Dokl. Akad. Nauk SSSR, 1989, vol. 305, no. 5, pp. 1085.

    Google Scholar 

  60. Soloviev, S.L., Kovachev, S.A., Kuzin, I.P., and Voronina, E.V., Mikroseismichnost Egeiskogo i tirrenskogo morei po nablyudeniam donnykh seismografov (Microseismicity in the Aegean and Tyrrhenian Seas As Inferred from OBS Observations), Moscow: Nauka, 1993.

  61. Stroenie i evolyutsiya zemnoi kory i verkhnei mantii Chernogo morya (The Structure and Evolution of the Crust and Upper Mantle in the Black Sea), Belousov, V.V. and Volvovsky, V.S., Eds., Moscow: Nauka, 1989.

    Google Scholar 

  62. Talebian, M. and Jackson, J., Offset on the main recent fault of NW Iran and implications for the late Cenozoic tectonics of the Arabia–Eurasia collision zone, Geophys. J. Int., 2002, vol. 150, pp. 422–439.

    Article  Google Scholar 

  63. Talebian, M. and Jackson, J., A reappraisal of earthquake focal mechanisms and active shortening in the Zagros mountains of Iran, Geophys. J. Int., 2004, vol. 156, pp. 506–526.

    Article  Google Scholar 

  64. Tatar, M., Hatzfeld, D., and Ghafory-Ashtiany, M., Tectonics of the Central Zagros (Iran) deduced from microearthquake seismicity, Geophys. J. Int., 2004, vol. 156, pp. 255–266.

    Article  Google Scholar 

  65. The Global Heat Flow Database. URL: https://ihfc-iugg.org/products/global-heat-flow-database/. Last accessed September 15, 2022.

  66. Trifonov, V.G., Zagros structure of the mountain belt (Iran), Geological Society, London Special Publications, 2010, vol. 330, pp. 5‒18. https://doi.org/10.1144/SP330.2

    Article  Google Scholar 

  67. Trifonov, V.G., Neotektonika podvizhnykh poyasov (The Recent Tectonics of Mobile Belts), Tr. Geol. Inst. RAS, Moscow: GEOS, 2017.

  68. Ulomov, V.I., A 3D model of lithosphere dynamics, seismicity structure, and water level change in the Caspian Sea, Fizika Zemli, 2003, no. 5, pp. 5–17.

  69. USGS. Search Earthquake Catalog. URL: https://earthquake.usgs.gov/earthquakes/search/. Last accessed September 25, 2022.

  70. Zverev, S.M., Akimov, G.N., Novikov, V.S., et al., Instrumentation for deep seismic sounding and the study of local earthquakes on land and in the sea, Seismicheskie Pribory, 1978, no. 11, pp. 75‒77.

Download references

Funding

This work was supported through a state assignment at the Shirshov Institute of Oceanology RAS, project no. FMWE-2021-0004.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Kovachev.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by A. Petrosyan

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kovachev, S.A., Krylov, A.A. Microseismicity in the Persian Gulf and in the Zagros Mountain Massif according to OBS Observations. J. Volcanolog. Seismol. 17, 474–490 (2023). https://doi.org/10.1134/S0742046323700343

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0742046323700343

Keywords:

Navigation