Skip to main content
Log in

The Character of Magmatism, Hydrothermal-Metasomatic, and Filtration-Transport Processes in Uranium-Bearing Volcanic-Related Structures

  • Published:
Journal of Volcanology and Seismology Aims and scope Submit manuscript

Abstract

The development of a refined conceptual model for the generation of volcanic-related uranium deposits includes studies in the character of magmatic, hydrothermal-metasomatic, and filtration-transport processes, as well as of the physicochemical conditions favoring the transport and deposition of uranium. We consider these issues using the examples of the Streltsovka caldera and the eponymous ore field in eastern Transbaikalia, the Xiangshan volcanic structure in South China, and the McDermitt caldera in the western United States (Oregon and Nevada). According to the IAEA classification (Geological Classification …, 2018), these ore fields and deposits are of the volcanic-related type, while the Streltsovka and the Xiangshan ore field show a combination of the volcanic-related type in the volcanic-sedimentary cover and the granite-related type at the basement. Most industrially viable uranium deposits of the volcanic-related type were formed in the regions listed above during Mesozoic and Cenozoic times (although we know of older, Paleozoic objects of the type). Although the time spans in which ore-bearing volcanic-related edifices were formed are different, many features in the occurrence of magmatic, hydrothermal, and filtration transport processes in these edifices are rather similar. It is commonly supposed that these features are due to a common effect of intraplate tectonic regimes or to the evolution of outer parts in the ocean-continent zones where magmatic activity produced volcanism of the bimodal series in the dominant basites–acid volcanics–basites sequence, while the migration of uranium-transporting fluids was controlled by a joint action of seismogeodynamic and thermal convective processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.

Similar content being viewed by others

REFERENCES

  1. Andreeva, O.V. and Golovin, V.A., Metasomatic processes at deposits of Mesozoic areas of intraplate magmatic activation (Eastern Mongolia, Transbaikalia), Geol. Rudn. Mest., 2001, vol. 43, no. 3, pp. 227‒242.

    Google Scholar 

  2. Andreeva, O.V., Petrov, V.A., and Poluektov, V.V., Mesozoic acid magmatites in southeastern Transbaikali: Petrogeochemistry, the relationship to metasomatism and mineralization, Geol. Rudn. Mest., 2020, vol. 62, no. 1, pp. 76‒104.

    Google Scholar 

  3. Andreeva, O.V., Petrov, V.A., and Poluektov, V.V., Albite metasomatites and thorium mineralization at volcanic-related uranium deposits: The Streltsovka ore field, eastern Transbaikalia, Dokl. Akad. Nauk, Nauki o Zemle, 2022, vol. 507, no. 2, pp. 179–186.

  4. Arculus, R.J. and Delano, J.W., Oxidation state of upper mantle: Present conditions, evolution, and controls, in Mantle Xenoliths, Nixon, P.H., Ed., Chichester: Wiley and Sons, 1987, pp. 119‒124.

    Google Scholar 

  5. Ballhaus, C., Redox states of lithospheric and asthenospheric upper mantle, Contrib. Mineral. Petrol., 1993, vol. 114, no. 3, pp. 331‒348.

    Article  Google Scholar 

  6. Bonnetti, C., Liu, X., Cuney, M., Mercadier, J., Riegler, T., and Chida, Y., Evolution of the uranium mineralization in the Zoujiashan deposit, Xiangshan ore field: Implications for the genesis of volcanic-related hydrothermal U deposits in South China, Ore Geology Reviews, 2020, vol. 122, Article 103514.

    Article  Google Scholar 

  7. Chabiron, A., Alyoshin, A.P, Cuney, M., Deloule, E., Golubev, V.N., Velitchkin, V.I., and Poty, B., Geochemistry of the rhyolitic magmas from the Streltsovka caldera (Transbaikalia, Russia): a melt inclusion study, Chemical Geology, 2001, vol. 175, pp. 273–290.

    Article  Google Scholar 

  8. Chabiron, A., Cuney, M., and Poty, B., Possible uranium sources for the largest uranium district associated with volcanism: the Streltsovka caldera (Transbaikalia, Russia), Mineralium Deposita, 2003, vol. 38, pp. 127‒140.

    Article  Google Scholar 

  9. Chi, G., Ashton, K., Deng, T., Xu, D., Li, Z., Song, H., Liang, R., and Kennicot, J., Comparison of granite-related uranium deposits in the Beaverlodge district (Canada) and South China – a common control of mineralization by coupled shallow and deep-seated geologic processes in an extensional setting, Ore Geol. Rev., 2020, vol. 117, 103 319. https://doi.org/10.1016/j.oregeorev.103319

  10. Chi, G., Xu, D., Xue, C., Li, Z., Ledru, P., Deng, T, Wang, Y., and Song, H., Hydrodynamic links between shallow and deep mineralization systems and implications for deep mineral exploration, Acta Geologica Sinica (English Edition), 2022, vol. 96, no. 1, pp. 1‒25.

    Article  Google Scholar 

  11. Cox, S.F., Coupling between deformation, fluid pressures, and fluid flow in ore-producing hydrothermal systems at depth in the crust, Econ. Geol., 2005, vol. 100, pp. 39‒75.

    Google Scholar 

  12. Cox, S.F., Injection-driven swarm seismicity and permeability enhancement: Implication for the dynamics of hydrothermal ore systems in high fluid-flux, overpressured faulting regimes, Econ. Geol., 2016, vol. 111, no. 3, pp. 559‒587.

    Article  Google Scholar 

  13. Cuney, M., Felsic magmatism and uranium deposits, Bull. Soc. Geol. France, 2014, vol. 185, no. 2, pp. 75‒92.

    Article  Google Scholar 

  14. Cunningham, C. G., Rasmussen, J.D., Steven, T.A., Rye, R.O., Rowley, P.D., Romberger, S.B., and Selverstone, J., Hydrothermal uranium deposits containing molybdenum and fluorite in the Marysvale volcanic field, west-central Utah, Mineralium Deposita, 1998, vol. 33, pp. 477‒494.

    Article  Google Scholar 

  15. Descriptive Uranium Deposit and Mineral System Models, IAEA, Vienna, 2020.

  16. Eby, G.N., The A-type granitoids: a review of their occurrence and chemical characteristics and speculations on their petrogenesis, Lithos, 1990, vol. 26, pp. 115‒134.

    Article  Google Scholar 

  17. Geological Classification of Uranium Deposits and Description of Selected Examples, IAEA TECDOC-1842, IAEA, Vienna. 2018.

  18. Geokhimiya mezozoiskikh latitov Zabaikalya (The Geochemistry of Mesozoic Latites in Transbaikalia), Novosibirsk: Nauka, 1984.

  19. Gou, J., Sun, D.-Y., and Qin, Z., Late Jurassic–Early Cretaceous tectonic evolution of the Great Xing’an Range: Geochronological and geochemical evidence from granitoids and volcanic rocks in the Erguna Block, NE China, Intern. Geol. Rev., 2019, vol. 61, no. 15, pp. 1842‒1863.

    Article  Google Scholar 

  20. Gray, T.R., Hanley, J.J., Dostal, J., and Guillong, M., Magmatic enrichment of uranium, thorium, and rare earth elements in late Paleozoic rhyolites of southern New Brunswick, Canada: evidence from silicate melt inclusions, Econ. Geol., 2011, vol. 106, no. 5, pp. 145‒158.

    Article  Google Scholar 

  21. Guo, Z., Li, T., Deng, M., and Qu, W., Key factors controlling volcanic-related uranium mineralization in the Xiangshan Basin, Jiangxi Province, South China: A review, Ore Geology Reviews, 2020, vol. 122, no. 5. 103517.

    Article  Google Scholar 

  22. Hagemann, S.G., Lisitsin, V., and Huston, D.L., Mineral system analysis: quo vadis, Ore Geology Reviews, 2016, vol. 76, pp. 504‒522.

    Article  Google Scholar 

  23. Hedenquist, J.W. and Taran, Y.A., Modeling the formation of advanced argillic lithocaps: volcanic vapor condensation above porphyry intrusions, Econ. Geol., 2013, vol. 108, no. 7, pp. 1523‒1540.

    Article  Google Scholar 

  24. Henry, C.D., Castor, S.B., Starkel, W.F., Ellis, B.S., Wolff, J.A., Laravie, J.A., McIntosh, W.C., and Heizler, M.T., Geology and evolution of the McDermitt caldera, northern Nevada and southeastern Oregon, western USA, Geosphere, 2017, vol. 13, no. 4, pp. 1066–1112.

    Article  Google Scholar 

  25. Husen, S. and Smith, R.B., Probabilistic earthquake relocation in three-dimensional velocity models for the Yellowstone National Park Region, Wyoming, Bull. Seismol. Soc. Am., 2004, vol. 94, no. 3, pp. 880‒896.

    Article  Google Scholar 

  26. Husen, S., Smith, R.B., and Waite, G.P., Evidence for gas and magmatic sources beneath the Yellowstone volcanic field from seismic tomographic imaging, J. Volcanol. Geotherm. Res., 2004, vol. 131, pp. 397‒410.

    Article  Google Scholar 

  27. Huston, D.L., Mernagh, T.R., Hagemann, S.G., Doublier, M.P., Fiorentini, M., Champion, D.C., Jaques, A.L., Czarnota, K., Cayley, R., Skirrow, R., and Bastrakov, E., Tectono-metallogenic systems – The place of mineral systems within tectonic evolution, with an emphasis on Australian examples, Ore Geology Reviews, 2016, vol. 76, pp. 168‒210.

    Article  Google Scholar 

  28. Inoue, A., Meunier, A., and Beaufort, D., Illite-smectite mixed-layer minerals in felsic volcaniclastic rocks from drill cores, Kakkonda, Japan, Clays Clay Miner., 2004, vol. 52, no. 1, pp. 66‒84.

    Article  Google Scholar 

  29. Jiang, Y.H., Ling, H.F., Jiang, S.Y., Fan, H.H., Shen, W.Z., and Ni, P., Petrogenesis of a Late Jurassic peraluminous volcanic complex and its high-Mg, potassic, quenched enclaves at Xiangshan, Southeast China, J. Petrology, 2005, vol. 46, no. 6, pp. 1121‒1154.

    Article  Google Scholar 

  30. Kadik, A.A., Reduced fluids in the mantle: The relationship to chemical differentiation of planetary matter, Geokhimiya, 2003, no. 9, pp. 928‒940.

  31. Kadik, A.A., The regime of oxygen fugacity in the upper mantle as an expression of chemical differentiation of planetary matter, Geokhimiya, 2006, no. 1, pp. 63‒79.

  32. Kovalenko, D.V., Petrov, V.A., Poluektov, V.V., and Ageeva, O.A., The geodynamic conditions of formation for Mesozoic volcanic rocks in the Streltsovka caldera, Dokl. Akad. Nauk, 2014, vol. 457, no. 5, pp. 564‒567.

    Google Scholar 

  33. Kovalenko, D.V., Petrov, V.A., Poluektov, V.V., and Ageeva, O.A., The geodynamic setting of Mesozoic mantle-derived rocks in the Streltsovka caldera, eastern Transbaikalia, mantle domains in Central Asia and in China, Vestnik KRAUNTs, Nauki o Zemle, 2015, no. 4, iss. 28, pp. 231‒246.

  34. Kozlovsky, A.M., Yarmolyuk, V.V., Salnikova, E.B., Savatenkov, V.M., Novikova, A.S., and Travin, A.V., Early Mesozoic alkali–salic magmatism in central Mongolia as indicating the closure of the Mongolia–Okhotsk ocean, in Geodinamicheskaya evolyutsiya litosfery Tsentralno-Aziatskogo podvizhnogo poyasa (ot okeana k kontinentu) (The Geodynamic Evolution of the Lithosphere in the Central Asia Mobile Belt (from Ocean to Continent)), Irkutsk: IZK SO RAN, 2022, issue 20, pp. 130–132.

  35. Krivtsov, A.I., Migachev, P.F., and Popov, V.S., Medno-porfirovye mestorozhdeniya mira (Copper Porphyry Deposits of the World), Moscow: Nedra, 1987.

  36. Langmuir, D., Uranium solution-mineral equilibria at low temperatures with applications to sedimentary ore deposits, Geochim. Cosmochim. Acta, 1978, vol. 42, pp. 547‒569.

    Article  Google Scholar 

  37. Laverov, N.P., Geological Conditions for the Formation of Uranium Deposits in Areas of Continental Volcanism: The Middle Tien Shan, Doctoral (Geol.-Mineral.) Dissertation, Moscow: IGEM AN SSSR, 1972. 372 p.

  38. Laverov, N.P. and Chernyshev, I.V., Timing relationships between uranium deposits and continental volcanism, in Geokhronologiya i problemy rudoobrazovaniya (Geochronology and Mineralization), Moscow: Nauka, 1977, pp. 5‒18.

  39. Laverov, N.P., Velichkin, V.I., Vlasov, B.P., Aleshin, A.P., and Petrov, V.A., Uranovye i molibden-uranovye mestorozhdeniya v oblastyakh razvitiya kontinentalnogo magmatizma: Geologiya, geodinamicheskie i fiziko-khimicheskie usloviya formirovaniya (Uranium and Molybdenum–Uranium Deposits in Areas of Continental Magmatism: Geology, Geodynamic and Physicochemical Conditions of Formation), Moscow: IFZ RAN, IGEM RAN, 2012.

  40. Li, Z., Chi, G., Bethune, K.M., Eldursi, K., Quirt, D., Ledru, P., and Thomas, D., Interplay between thermal convection and compressional fault reactivation in the formation of unconformity-related uranium deposits, Mineralium Deposita, 2021, vol. 56, pp. 1389–1404.

    Article  Google Scholar 

  41. Magmaticheskie gornye porody (Igneous Rocks), vol. 4, Moscow: Nauka, 1987.

  42. Maniar, P.D. and Piccoli, P.M., Tectonic discrimination of granitoids, Bull. Geol. Soc. Amer., 1989, vol. 101, pp. 635‒643.

    Article  Google Scholar 

  43. Metasomatity i metasomaticheskie gornye porody (Metasomatites and Metasomatic Rocks), Moscow: Nauchnyi Mir, 1998.

  44. Migdisov, A.A., Boukhalfa, H., Timofeev, A., Runde, W., Roback, R., and Williams-Jones, A.E., A spectroscopic study of uranyl speciation in chloride-bearing solutions at temperatures up to 250°C, Geochim. Cosmochim. Acta, 2018, vol. 222, pp. 130‒145.

    Article  Google Scholar 

  45. Naumov, G.B., The migration of uranium in hydrothermal brine, Geol. Rudn. Mest., 1998, vol. 40, no. 4, pp. 307‒325.

    Google Scholar 

  46. Naumov, V.B., The chemical composition, volatiles, and admixture elements in rhyolite melts of eastern Transbaikalia and North Caucasus based on results of a study of inclusions in minerals, Geol. Geofiz., 2011, vol. 52, no. 11, pp. 1736‒1747.

    Google Scholar 

  47. Naumov, V.B. and Kovalenko, V.I., The concentration of sulfur in magma melts as inferred from a study of inclusions in minerals, Geokhimiya, 1997, no. 1, pp. 97‒103.

  48. Naumov, V.B., Dorofeeva, V.A., and Mironova, O.F., The physicochemical parameters during the formation of hydrothermal fields as inferred from a study of fluid inclusions. III. Uranium deposits, Geokhimiya, 2015, no. 2, pp.123‒143.

  49. Nguyen, P.T., Cox, S.F., Harris, L.B., and Powell, C.McA., Fault-valve behaviour in optimally oriented shear zones: An example at the Revenge gold mine, Kambalda, Western Australia, J. Struct. Geol., 1998, vol. 20, no. 12, pp. 1625‒1640.

    Article  Google Scholar 

  50. Nikitina, L.P., Goncharov, A.G., Saltykova, A.K., and Babushkina, M.S., The redox potential of the continental lithospheric mantle in the Baikal–Mongolia region, Geokhimiya, 2010, no. 1, pp. 17‒44.

  51. Peccerillo, A. and Taylor, S.R., Geochemistry of Eocene calc-alkaline volcanic rocks from Kastamonu Area, Northern Turkey, Contrib. Miner. Petrol., 1976, vol. 58, no. 1, pp. 63‒83.

    Article  Google Scholar 

  52. Peiffert, C., Nguen-Trung, C., and Cuney, M., Uranium in granitic magmas. Part II, Geochim. Cosmochim. Acta, 1996, vol. 60, pp. 1515‒1529.

    Article  Google Scholar 

  53. Pek, A.A., Malkovsky, V.I., and Petrov, V.A., Thermal convection of fluids as a viable mechanism for the formation of unique uranium deposits, Streltsovka and Antei, eastern Transbaikalia, Geol. Rudn. Mest., 2018, vol. 60, no. 6, pp. 558‒574.

    Google Scholar 

  54. Pek, A.A., Malkovsky, V.I., and Petrov, V.A., The mineral system of uranium deposits in the Streltsovka caldera, eastern Transbaikalia, Geol. Rudn. Mest., 2020, vol. 62, no. 1, pp. 36‒54.

    Google Scholar 

  55. Petrov, V.A., Tectonophysical and structural petrophysical indicators for migration of fluids in fault zones and the methods applicable to their study, in Sovremennaya tektonofizika: Metody i rezultaty (Modern Tectonophysics: Methods and Results), Moscow: IFZ RAN, 2011, pp. 94‒108.

  56. Petrov, V.A., Seismogeodynamics and tectonophysics of hydrothermal mineralization, Razv. Okhr. Nedr, 2017, no. 11, pp. 37‒42.

  57. Petrov, V.A., Lespinas, M., and Hammer, J., The tectonodynamics of fluid-conducting structures and the migration of radionuclides in crystalline rock massifs, Geol. Rudn. Mest., 2008a, vol. 50, no. 2, pp. 99‒126.

    Google Scholar 

  58. Petrov, V.A., Poluektov, V.V., Hammer, J., and Schukin, S.I., Fault-related barriers for uranium transport, in Uranium Mining and Hydrogeology, Merkel, B.J., and Hasche-Berger, A., Eds., Springer-Verlag, 2008b, pp. 779‒789.

    Google Scholar 

  59. Petrov, V.A., Andreeva, O.V., and Poluektov, V.V., The influence of petrophysical properties and deformation in rocks on the vertical zoning of metasomatites in uranium-bearing volcanic structures: The Streltsovka caldera, Transbaikalia, Geol. Rudn. Mest., 2014, vo. 56, no. 2, pp. 95‒117.

    Google Scholar 

  60. Petrov, V.A., Andreeva, O.V., and Poluektov, V.V., Tectono-magmatic cycles and geodynamic settings for the formation of ore-bearing systems in southern Argun area, Geol. Rudn. Mest., 2017, vol. 59, no. 6, pp. 445‒469.

    Google Scholar 

  61. Petrov, V.A., Andreeva, O.V., Poluektov, V.V., and Kovalenko, D.V., Volcanic-related uranium-bearing structures (Streltsovka, Russia; Xiangshan, China; and McDermitt, USA): Comparative analysis between the petrologies of acid volcanics and the composition of associated metasomatites, Geol. Rudn. Mest., 2022a, vol. 64, no. 1, pp. 7‒36.

    Google Scholar 

  62. Petrov, V.A., Pek, A.A., and Malkovsky, V.I., Uranium sources and fluid transport in volcanic mineralized systems: An example of Streltsovka caldera, Russia with reflection on Dornot, Mongolia, J. Volcanol. Seismol., 2022b, vol. 16, no. 6, pp. 472‒497.

    Article  Google Scholar 

  63. Pierce, K.L. and Morgan, L.A., Is the track of the Yellowstone hotspot driven by a deep mantle plume? ‒ Review of volcanism, faulting, and uplift in light of new data, J. Volcanol. Geotherm. Res., 2009, vol. 188, no. 1, pp. 1‒25.

    Article  Google Scholar 

  64. Pirajno, F., Hydrothermal Processes and Mineral Systems, Springer Dordrecht, 2009.

    Book  Google Scholar 

  65. Pirajno, F., A classification of mineral systems, overviews of plate tectonic margins and examples of ore deposits associated with convergent margins, Gondwana Research, 2016, vol. 33, pp. 44‒62.

    Article  Google Scholar 

  66. Rafalsky, R.P. and Osipov, B.S., Hydrothermal equilibria in systems that contain uranium and sulfides of heavy metals at 200–360°C, Geol. Rudn. Mest., 1967, vol. 9, no. 2, pp. 44‒57.

    Google Scholar 

  67. Redkin, A.F., Velichkin, V.I., and Shapovalov, Yu.B., A study in the behavior of uranium, niobium, and tantalum in a granite melt–fluoride fluid system at 800‒950°C, 2300 bars, Geol. Rudn. Mest., 2021, vol. 63, no. 4, pp. 311‒335.

    Google Scholar 

  68. Rusinov, V.L., Two families of epithermal deposits and the petrologic basis for discrimination between the two, Dokl. Akad. Nauk, 2001, vol. 381, no. 2, pp. 239‒242.

    Google Scholar 

  69. Ryabchikov, I.D., Global flows of ore metals in deep-seated processes, Geol. Rudn. Mest., 1997, vol. 38, no. 5, pp. 403‒409.

    Google Scholar 

  70. Shmariovich, E.M., Agapova, G.F., Rekharskaya, V.M., et al., An experimental study of leaching of uranium from various rocks by thermal sulfide carbonate solutions, Geol. Rudn. Mest., 1984, no. 3, pp. 87‒98.

  71. Sibson, R.H., Seismogenic framework for ore deposition, Rev. Econ. Geol., 2001, vol. 14, pp. 25‒50.

    Google Scholar 

  72. Sibson, R.H., Controls on maximum fluid overpressure dating conditions for mesozonal mineralisation, J. Struct. Geol., 2004, vol. 26, no. 6‒7, pp. 1127‒1136.

    Article  Google Scholar 

  73. Sibson, R.H., Arterial faults and their role in mineralizing systems, Geoscience Frontiers, 2019, vol. 10, pp. 2093‒2100.

    Article  Google Scholar 

  74. Sillitoe, R., Porphyry copper systems, Econ. Geol., 2010, vol. 105. № 1. pp. 3‒41.

    Article  Google Scholar 

  75. Sillitoe, R.H. and Hedenquist, J.W., Linkages between volcanotectonic settings, ore-fluid composition, and epithermal precious metal deposits, Econ. Geol. Special Publication, 2003, vol. 10, pp. 315‒343.

    Google Scholar 

  76. Skirrow, R.G., Jaireth, S., Huston, D.L., Bastrakov, E.N., Schofield, A., van der Wielen, S.E., and Barnicoat, A.C., Uranium Mineral Systems: Processes, Exploration Criteria and a New Deposit Framework, Geoscience Australia Record, 2009/20, 2009.

  77. Smith, R.B., Jordan, M., Steinberger, B., Puskas, C.M., Farrell, J., Waite, G.P., Husen, S., Chang, W.-L., and O’Connell, R., Geodynamics of the Yellowstone hotspot and mantle plume: Seismic and GPS imaging, kinematics, and mantle flow, J. Volcanol. Geotherm. Res., 2009, vol. 188, pp. 26‒56.

    Article  Google Scholar 

  78. Spiridonov, A.M., Zorina, L.D., and Kitaev, N.A., Zolotonosnye rudno-magmaticheskie sistemy Zabaikalya (Gold-Bearing Magmatic Ore Systems in Transbaikalia), Novosibirsk: Geo, 2006.

    Google Scholar 

  79. Steiner, A., Hydrothermal Rock Alteration of Wairakei, New Zealand, Bull. N.Z. Geol. Surv., 1977, no. 90.

  80. Timofeev, A.1., Migdisov, A.A., Williams-Jones, A.E., Roback, R., Nelson, A.T., and Hongwu, Xu, Uranium transport in acidic brines under reducing conditions, Nature Communications, 2018, vol. 9: 1469, pp. 1‒7.

    Article  Google Scholar 

  81. Waite, G.P. and Smith, R.B., Seismic evidence for fluid migration accompanying subsidence of the Yellowstone caldera, J. Geophys. Res., 2002, vol. 107, no. B9: 2177, pp. 1‒18.

  82. Whalen, J.B., Currie, K.L., and Chappel, B.W., A-type granites: geochemical characteristics, discrimination and petrogenesis, Contrib. Miner. Petrol., 1987, vol. 95, pp. 407‒419.

    Article  Google Scholar 

  83. Wyborn, L.A.I., Heinrich, C.A., and Jaques, A.L., Australian Proterozoic mineral systems: essential ingredients and mappable criteria, AusIMM Publication Series 4/94, 1994, pp. 109–115.

    Google Scholar 

  84. Xu, W.L., Pei, F.P., Wang, F., Meng, E., Ji, W.Q., Yang, D.B., and Wang, W., Spatial–temporal relationships of Mesozoic volcanic rocks in NE China: constraints on tectonic overprinting and transformations between multiple tectonic regimes, J. Asian Earth Sci., 2013, vol. 74, pp. 167‒193.

    Article  Google Scholar 

  85. Yang, S.Y., Jiang, S.Y, Jiang, Y.H., Zhao, K.D., and Fan, H.H., Zircon U-Pb geochronology, Hf isotopic composition and geological implications of the rhyodacite and rhyodacitic porphyry in the Xiangshan uranium ore field, Jiangxi Province, China, Science China Earth Sciences, 2010, vol. 53, pp. 1411‒1426.

    Article  Google Scholar 

  86. Zlobina, T.M., Petrov, V.A., Prokofiev, V.Yu., Abramov, S.S., Kotov, A.A., Volfson, A.A., and Leksin, A.B., The seismogenic nature of fluid-dynamic structural parageneses at the Uryakh gold field, northeastern Transbaikalia, Geol. Rudn. Mest., 2020, vol. 62, no. 4, pp. 291‒320.

    Google Scholar 

Download references

ACKNOWLEDGMENTS

We wish to thank two anonymous reviewers for constructive remarks and proposals during the preparation of this paper.

Funding

This work was supported through a IGEM RAS state assignment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Petrov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by A. Petrosyan

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Petrov, V.A., Andreeva, O.V. & Poluektov, V.V. The Character of Magmatism, Hydrothermal-Metasomatic, and Filtration-Transport Processes in Uranium-Bearing Volcanic-Related Structures. J. Volcanolog. Seismol. 17, 353–373 (2023). https://doi.org/10.1134/S0742046323700306

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0742046323700306

Keywords:

Navigation