Skip to main content
Log in

Bouncing Cosmological Models in a Functional form of \(\boldsymbol{F(R)}\) Gravity

  • Published:
Gravitation and Cosmology Aims and scope Submit manuscript

Abstract

We investigate some bouncing cosmological models in an isotropic and homogeneous space-time with in \(F(R)\) theory of gravity. Two functional forms of \(F(R)\) have are studied with a bouncing scale factor. The dynamical parameters are derived and analyzed along with cosmographic parameters. A violation of sthe trong energy conditions in both bouncing models is also shown. We show that both models exhibit stable behavior with respect to cosmic time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. A. Friedmann, Zeitschrift fur Physik 10, 377 (1922).

    Article  ADS  Google Scholar 

  2. A. Friedmann, Z. Phys. 21, 326 (1924).

    Article  ADS  Google Scholar 

  3. R. Brout, F. Englert, and E. Gunzig, Annals. Phys. 115, 78 (1978).

    Article  ADS  Google Scholar 

  4. A. H. Guth et.al., Phys. Rev. D 23, 347 (1981).

    Article  ADS  Google Scholar 

  5. A. A. Starobinsky, Phys. Lett. B 91, 99 (1980).

    Article  ADS  Google Scholar 

  6. A. G. Riess et al., Astron. J. 116, 1009 (1998).

    Article  ADS  Google Scholar 

  7. S. Perlmutter, M. S. Turner, and M. White, Phys. Rev. Lett. 83, 670 (1999).

    Article  ADS  Google Scholar 

  8. M. Tegmark et al., Phys. Rev. D 69, 103501 (2004).

    Article  ADS  Google Scholar 

  9. K. Abazajian et al., Astron. J. 128, 502 (2004).

    Article  ADS  Google Scholar 

  10. D. N. Spergel et al., Astrophys. J. Suppl. 148, 175 (2003).

    Article  Google Scholar 

  11. G. Hinshaw et al., Astrophys. J. Suppl. 208, 19 (2013).

    Article  Google Scholar 

  12. D. Parkinson et al., Phys. Rev. D 86, 103518 (2012).

    Article  ADS  Google Scholar 

  13. S. Weinberg, Rev. Mod. Phys. 61, 1 (1989).

    Article  ADS  Google Scholar 

  14. A. Kamenshchik, U. Moschella, and V. Pasquier, Phys. Lett. B 511, 265 (2001).

    Article  ADS  Google Scholar 

  15. R. R. Caldwell, Phys. Lett. B 545, 23 (2002).

    Article  ADS  Google Scholar 

  16. A.R. Amani, Int. J. Theor. Phys. 50, 3078 (2011).

    Article  Google Scholar 

  17. J. Sadeghi and A. R. Amani, Int. J. Theor. Phys. 48, 14 (2009).

    Article  Google Scholar 

  18. M. R. Setare, J. Sadeghi, and A. R. Amani, Phys. Lett. B 673, 241 (2009).

    Article  ADS  Google Scholar 

  19. M. R. Setare, J. Sadeghi, and A. R. Amani, Int. J. Mod. Phys. D 18, 1291 (2009).

    Article  ADS  Google Scholar 

  20. A.R. Amani et al., Can. J. Phys. 90, 61 (2011).

    Article  ADS  Google Scholar 

  21. S. M. Carroll et al., Phys. Rev. D 70, 043528 (2004).

    Article  ADS  Google Scholar 

  22. S. Nojiric and S. D. Odintsov, Phys. Rev. D 68, 123512 (2003).

    Article  ADS  Google Scholar 

  23. S. Nojiri and S. D. Odintsov, Int. J. Geom. Meth. Mod. Phys. 04, 115 (2007).

    Article  Google Scholar 

  24. S. Nojiri, and S. D. Odintsov, Phys. Rep. 505, 59 (2011).

    Article  ADS  MathSciNet  Google Scholar 

  25. S. Nojiri and S. D. Odintsov, Int. J. Geom. Meth. Mod. Phys. 11, 1460006 (2014).

    Article  Google Scholar 

  26. S. Capozziello and M. De Laurentis, Phys. Rep. 509, 167 (2011).

    Article  ADS  MathSciNet  Google Scholar 

  27. K. Bamba, C. Q. Geng, and C. C. Lee, J. Cosmol. Astropart. Phys. 11, 001 (2010).

  28. K. Bamba et al., Astrophys. Space Sci. 342, 155 (2012).

    Article  ADS  Google Scholar 

  29. L. Amendola et al., Phys. Rev.D 75, 083504 (2007).

    Article  ADS  Google Scholar 

  30. S. Nojiri and S. D. Odintsov, Phys. Lett. B 631, 1 (2005).

    Article  ADS  MathSciNet  Google Scholar 

  31. E.V. Linder, Phys. Rev. D 81, 127301 (2010).

    Article  ADS  Google Scholar 

  32. R. Myrzakulov, Eur. Phys. J. C 71, 1752 (2011).

    Article  ADS  Google Scholar 

  33. T. Harko et al., Phys. Rev. D 84, 024020 (2011).

    Article  ADS  Google Scholar 

  34. B. Mishra, S. Tarai, and S. K. Tripathy, Adv. High Energy Phys. 2016, 8543560 (2016).

    Google Scholar 

  35. B. Mishra, S. Tarai, and S. K. Tripathy, Ind. J. Phys. 92, 1199 (2018).

    Article  Google Scholar 

  36. Z. Yousaf, K. Bamba, and M. Z. H. Bhatti, Phys. Rev. D 93, 124048 (2016).

    Article  ADS  MathSciNet  Google Scholar 

  37. H. Velten and T. R. P. Carames, Phys. Rev. D 95, 123536 (2017).

    Article  ADS  Google Scholar 

  38. G. A. Carvalho et al., Eur. Phys. J. C 77, 871 (2017).

    Article  ADS  Google Scholar 

  39. P. V. Tretyakov, Eur. Phys. J. C 78, 896 (2018).

    Article  ADS  Google Scholar 

  40. E. H. Baffou et al., Eur. Phys. J. C 79, 112 (2019).

    Article  ADS  Google Scholar 

  41. A. Alhamzawi and R. Alhamzawi, Int. J. Mod. Phys. D 25, 1650020 (2016).

    Article  ADS  MathSciNet  Google Scholar 

  42. M. E. S. Alves et al., Phys. Rev. D 94, 024032 (2016).

    Article  ADS  MathSciNet  Google Scholar 

  43. G. Abbas and R. Ahmed, Eur. Phys. J. C 77, 441 (2017).

    Article  ADS  Google Scholar 

  44. H. Abedi et al., Phys. Rev. D 97, 084008 (2018).

    Article  ADS  MathSciNet  Google Scholar 

  45. R. D’Agostino and O. Luongo, Phys. Rev. D 98, 124013 (2018).

    Article  ADS  MathSciNet  Google Scholar 

  46. S. Capozziello and M. De Laurentis, Phys. Rep. 509, 167 (2011).

    Article  ADS  MathSciNet  Google Scholar 

  47. S. Capozziello, R. D’Agostino, and O. Luongo, Int. J. Mod. Phys. D 28, 1930016 (2019).

    Article  ADS  Google Scholar 

  48. B. Mishra, S. K. Tripathy, and S. Tarai, Mod. Phys. Lett. A 33, 1850052 (2018).

    Article  ADS  Google Scholar 

  49. B. Mishra, S. Tarai, and S.K. Tripathy, Mod. Phys. Lett. A 33, 1850170 (2018).

    Article  ADS  Google Scholar 

  50. A. Conroy and T. Koivisto, Eur. Phys. J. C. 78, 923 (2018).

    Article  ADS  Google Scholar 

  51. Y. Xu et al., Eur. Phys. J. C 79, 708 (2019).

    Article  ADS  Google Scholar 

  52. K. Bamba et al, J. Cosmol. Astropart. Phys. 01, 008 (2014).

  53. C. Barragan, G. J. Olmo, and H. S. Alepuz, Phys. Rev. D 80, 024016 (2009).

    Article  ADS  Google Scholar 

  54. C. Barragan and G. J. Olmo, Phys. Rev. D 82, 084015 (2010).

    Article  ADS  Google Scholar 

  55. S. Chakraborty, Phys. Rev. D 98, 024009 (2018).

    Article  ADS  MathSciNet  Google Scholar 

  56. K. Bamba et al., Phys. Lett. B 732, 349 (2014).

    Article  ADS  MathSciNet  Google Scholar 

  57. K. Bamba et al., J. Cosmol. Astropart. Phys. 04, 001 (2015).

  58. J. K. Singh et al., Phys. Rev. D 97, 123536 (2018).

    Article  ADS  MathSciNet  Google Scholar 

  59. S. K. Tripathy, R. K. Khuntia, and P. Parida, Eur. Phys. J. Plus 134, 504 (2019).

    Article  Google Scholar 

  60. B. Mishra, G. Ribeiro, and P. H. R. S. Moraes, Mod. Phys. Lett. 34, 1950321 (2019).

    Article  ADS  Google Scholar 

  61. S. K. Tripathy et al., Chin. J. Phys. 71, 610 (2021).

    Article  Google Scholar 

  62. A. S. Agrawal, F. Tello-Ortiz, B. Mishra, and S. K. Tripathy, Fortschr. Physik 2100065 (2021).

  63. A. S. Agrawal, L. Pati, S. K. Tripathy, and B. Mishra, Physics Dark Univ. 33 100863 (2021).

    Article  Google Scholar 

  64. Y. F. Cai, C. Gao, and E. N. Saridakis, Class. Quantum Grav. 28, 215011 (2011).

    Article  ADS  Google Scholar 

  65. A. S. Agrawal, B. Mishra, and P. K. Agrawal, Eur. Phys. J. C 83, 113 (2023).

    Article  ADS  Google Scholar 

  66. S. V. Lohakare, F. Tello-Ortiz, S. K. Tripathy, and B. Mishra, Universe 8 (12), 636 (2022).

    Article  ADS  Google Scholar 

  67. S. D. Odintsov and V. K. Oikonomou, Int. J. Mod. Phys. D. 26 1750085 (2017).

    Article  ADS  Google Scholar 

  68. E. Elizalde, S. D. Odintsov, V. K. Oikonomou, and Tanmoy Paul, Nucl. Phys. B 954, 114984 (2020).

    Article  Google Scholar 

  69. T. P. Sotiriou and V. Faraoni, Rev. Mod. Phys. 82, 451 (2010).

    Article  ADS  Google Scholar 

  70. A. De Felice and S. Tsujikawa, Living Rev. Relativ. 13, 3 (2010).

    Article  ADS  Google Scholar 

  71. W. Hu and I. Sawicki, Phys. Rev. D 76, 064004 (2007).

    Article  ADS  Google Scholar 

  72. A. A. Starobinsky, JETP Lett. 86, 157 (2007).

    Article  ADS  Google Scholar 

  73. G. Cognola, E. Elizalde, S. Nojiri, S. D. Odintsov, L. Sebastiani, and S. Zerbini, Phys. Rev. D 77, 046009 (2008).

    Article  ADS  Google Scholar 

  74. M. F. Shamir and I. Fayyaz, Eur. Phys. J. C 80 1102 (2020).

    Article  ADS  Google Scholar 

  75. Y. C. Chen et al., Eur. Phys. J. C 79 93 (2019).

    Article  ADS  Google Scholar 

  76. S. D. Odintsov et al., Class Quantum Grav. 37, 235005 (2020).

    Article  ADS  Google Scholar 

  77. S. D. Odintsov, T. Paul, I. Banerjee, R. Myrzakulov, and S. SenGupta, Physics Dark Univ. 33, 100864 (2021).

    Article  Google Scholar 

  78. T. Saidov and A. Zhuk, Phys. Rev. D 81, 124002 (2010).

    Article  ADS  Google Scholar 

  79. C. Barragan, G. J. Olmo, and H. Sanchis-Alepuz, Phys. Rev. D 80 024016 (2009).

    Article  ADS  Google Scholar 

  80. G. J. Olmo and P. Singh, J. Cosmol. Astropart. Phys. 01, 30 (2009).

    Article  ADS  Google Scholar 

  81. G. J. Olmo, Int. J. Mod. Phys. D 20, 413 (2011).

    Article  ADS  MathSciNet  Google Scholar 

  82. S. Nojiri, S.D. Odintsov, V.K. Oikonomou, and T. Paul, Phys. Rev. D 100, 084056 (2019).

    Article  ADS  MathSciNet  Google Scholar 

  83. S. D. Odintsov et al., Nucl. Phys. B 959, 115159 (2020).

    Article  Google Scholar 

  84. P. A. R. Ade et al. [Planck Collaboration], Astron. Astroph. 571, 1432 (2014).

    Google Scholar 

  85. P. A. R. Ade et al. [Planck Collaboration], Astron. Astroph. 594, 1432 (2016).

    Google Scholar 

  86. Y. Akrami et al. [Planck Collaboration], Astron. Astroph. 641, 1432 (2020).

    Google Scholar 

  87. S. D. Odintsov et al., Class. Quantum Grav. 37, 235005 (2020).

    Article  ADS  Google Scholar 

  88. E. V. Linder, Phys. Rev. D 72, 043529 (2005).

    Article  ADS  Google Scholar 

  89. V. Sahni et al., JETP Lett. 77, 201 (2003).

    Article  ADS  Google Scholar 

  90. S. Capozziello et al., MNRAS 494, 2576 (2020).

    Article  ADS  Google Scholar 

  91. S. W. Hawking and G. F. R. Ellis, The Large Scale Structure of Space-Time (Cambridge Univ. Press, Cambridge, 1974).

    MATH  Google Scholar 

  92. A. Raychaudhuri, Phys. Rev. D 98, 1123 (1955).

    Article  ADS  Google Scholar 

  93. S. Capozziello, S. Nojiri, and S. D. Odintsov, Phys. Lett. B 781, 99 (2018).

    Article  ADS  MathSciNet  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are thankful to the honorable referee for constructive comments and suggestions for improvement of the paper.

Funding

ASA acknowledges financial support provided by University Grants Commission (UGC) through Senior Research Fellowship (File No. 16-9 (June 2017)/2018 (NET/CSIR)). BM and SKT thank IUCAA, Pune, India for providing support through visiting associateship program.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S. Mishra, S. K. Tripathy or B. Mishra.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Agrawal, A.S., Mishra, S., Tripathy, S.K. et al. Bouncing Cosmological Models in a Functional form of \(\boldsymbol{F(R)}\) Gravity. Gravit. Cosmol. 29, 294–304 (2023). https://doi.org/10.1134/S0202289323030027

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0202289323030027

Navigation