Skip to main content
Log in

Membrane solutions to Hořava gravity

  • Published:
Gravitation and Cosmology Aims and scope Submit manuscript

Abstract

We have investigated purely gravitational membrane solutions to the Hořava nonrelativistic theory of gravity with detailed balance in 3 + 1 dimensions. We find that for arbitrary values of the running parameter λ > 1/3 there exist two branches of membrane solutions, and that in the special case λ = 1 one of them is degenerate, the lapse function being undetermined. For negative values of the cosmological constant, the solution contains a single membrane sitting at the center of space, which extends infinitely in the transverse direction, approaching a Lifshitz metric. For positive values of the cosmological constant, the solution represents a space that is bounded in the transverse direction, with two parallelmembrane-like or point-like singularities sitting at each of the boundaries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Horava, “Quantum Gravity at a Lifshitz Point,” Phys. Rev. D 79, 084008 (2009); arXiv: 0901.3775.

    Article  ADS  MathSciNet  Google Scholar 

  2. G. Calcagni, “Detailed balance in Horava–Lifshitz gravity,” Phys. Rev. D 81, 044006 (2010); arXiv: 0905.3740.

    Article  ADS  Google Scholar 

  3. M. Li and Y. Pang, “A trouble with Hořava-Lifshitz gravity,” JHEP 0908, 015 (2009); arXiv: 0905.2751.

    ADS  Google Scholar 

  4. D. Orlando and S. Reffert, “On the renormalizability of Horava–Lifshitz-type gravities,” Class. Quant. Grav. 26, 155021 (2009); arXiv: 0905.0301.

    Article  ADS  MATH  Google Scholar 

  5. S. Dutta and E. N. Saridakis, “Observational constraints on Horava–Lifshitz cosmology,” JCAP 1001, 013 (2010); arXiv: 0911.1435.

    ADS  Google Scholar 

  6. S. Dutta and E. N. Saridakis, “Overall observational constraints on the running parameter λ of Horava–Lifshitz gravity,” JCAP 1005, 013 (2010); arXiv: 1002.3373.

    ADS  Google Scholar 

  7. M. Visser, “Lorentz symmetry breaking as a quantum field theory regulator,” Phys. Rev. D 80, 025011 (2009); arXiv: 0902.0590.

    Article  ADS  MathSciNet  Google Scholar 

  8. T. P. Sotiriou, M. Visser, and S. Weinfurtner, “Phenomenologically viable Lorentz-violating quantum gravity,” Phys. Rev. Lett. 102, 251601 (2009); arXiv: 0904.4464.

    Article  ADS  MathSciNet  Google Scholar 

  9. T. P. Sotiriou, M. Visser, and S. Weinfurtner, “Quantum gravity without Lorentz invariance,” JHEP 0910, 033 (2009); arXiv: 0905.2798.

    Article  ADS  MathSciNet  Google Scholar 

  10. H. Lu, J. Mei, and C. N. Pope, “Solutions to Horava gravity,” Phys. Rev. Lett. 103, 091301 (2009); arXiv: 0904.1595.

    Article  ADS  MathSciNet  Google Scholar 

  11. A. Kehagias and K. Sfetsos, “The black hole and FRW geometries of non-relativistic gravity,” Phys. Lett. B 678, 123 (2009); arXiv: 0905.0477.

    Article  ADS  MathSciNet  Google Scholar 

  12. R.G. Cai, L.M. Cao, and N. Ohta, “Topological black holes in Horava–Lifshitz gravity,” Phys. Rev. D 80, 024003 (2009); arXiv: 0904.3670.

    Article  ADS  MathSciNet  Google Scholar 

  13. R. G. Cai, Y. Liu, and Y. W. Sun, “On the z = 4 Horava–Lifshitz gravity,” JHEP 0906, 010 (2009); arXiv: 0904.4104.

    Article  ADS  MathSciNet  Google Scholar 

  14. M. i. Park, “The black hole and cosmological solutions in IRmodified Horava gravity,” JHEP 0909, 123 (2009); arXiv: 0905.4480.

    Article  ADS  Google Scholar 

  15. M. Botta-Cantcheff, N. Grandi, and M. Sturla, “Wormhole solutions to Horava gravity,” Phys. Rev. D 82, 124034 (2010); arXiv: 0906.0582.

    Article  ADS  Google Scholar 

  16. E. O. Colgain and H. Yavartanoo, “Dyonic solution of Horava–Lifshitz gravity,” JHEP 0908, 021 (2009); arXiv: 0904.4357.

    Article  ADS  MathSciNet  Google Scholar 

  17. A. Ghodsi and E. Hatefi, “Extremal rotating solutions in Horava gravity,” Phys. Rev. D 81 (2010) 044016; arXiv: 0906.1237.

    Article  ADS  MathSciNet  Google Scholar 

  18. I. Cho and G. Kang, “Four dimensional string solutions in Hořava-Lifshitz gravity,” JHEP 1007, 034 (2010); arXiv: 0909.3065.

    Article  ADS  MATH  Google Scholar 

  19. T. Kim and Y. Kim, “Constraints on flows in Horava–Lifshitz gravity by classical solutions,” Phys. Rev. D 82, 104034 (2010); arXiv: 1009.1211.

    Article  ADS  Google Scholar 

  20. A. Ghodsi, “Toroidal solutions inHorava gravity,” Int. J.Mod. Phys. A 26, 925 (2011); arXiv: 0905.0836.

    Article  ADS  MATH  Google Scholar 

  21. H. Nastase, “On IR solutions in Horava gravity theories,” arXiv: 0904.3604.

  22. T. Takahashi and J. Soda, “Chiral primordial gravitational waves from a Lifshitz point,” Phys. Rev. Lett. 102, 231301 (2009); arXiv: 0904.0554.

    Article  ADS  Google Scholar 

  23. G. Calcagni, “Cosmology of the Lifshitz universe,” JHEP 0909, 112 (2009); arXiv: 0904.0829.

    Article  ADS  MathSciNet  Google Scholar 

  24. E. Kiritsis and G. Kofinas, “Horava–Lifshitz Cosmology,” Nucl. Phys. B 821, 467 (2009); arXiv: 0904.1334.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. R. Brandenberger, “Matter Bounce in Horava–Lifshitz Cosmology,” Phys. Rev. D 80, 043516 (2009); arXiv: 0904.2835.

    Article  ADS  MathSciNet  Google Scholar 

  26. S. Mukohyama, “Scale-invariant cosmological perturbations from Horava–Lifshitz gravity without inflation,” JCAP 0906, 001 (2009); arXiv: 0904.2190.

    Article  ADS  Google Scholar 

  27. Y. S. Piao, “Primordial Perturbation in Horava–Lifshitz Cosmology,” Phys. Lett. B 681, 1 (2009); arXiv: 0904.4117.

    Article  ADS  Google Scholar 

  28. E. N. Saridakis, “Horava–Lifshitz Dark Energy,” Eur. Phys. J. C 67, 229 (2010); arXiv: 0905.3532.

    Article  ADS  Google Scholar 

  29. A. Wang and Y. Wu, “Thermodynamics and classification of cosmological models in the Horava–Lifshitz theory of gravity,” JCAP 0907, 012 (2009); arXiv: 0905.4117.

    Article  ADS  Google Scholar 

  30. Y. F. Cai and E. N. Saridakis, “Non-singular cosmology in a model of non-relativistic gravity,” JCAP 0910 (2009) 020; arXiv: 0906.1789.

    Article  ADS  Google Scholar 

  31. G. Leon and E. N. Saridakis, “Phase-space analysis of Horava–Lifshitz cosmology,” JCAP 0911, 006 (2009); arXiv: 0909.3571.

    Article  ADS  MathSciNet  Google Scholar 

  32. M. Jamil and E. N. Saridakis, “New agegraphic dark energy in Horava–Lifshitz cosmology,” JCAP 1007, 028 (2010); arXiv: 1003.5637.

    Article  ADS  Google Scholar 

  33. M. Jamil, E. N. Saridakis, and M. R. Setare, “The generalized second law of thermodynamics in Horava–Lifshitz cosmology,” JCAP 1011, 032 (2010); arXiv: 1003.0876.

    Article  ADS  MathSciNet  Google Scholar 

  34. A. Ali, S. Dutta, E. N. Saridakis, and A. A. Sen, “Horava–Lifshitz cosmology with generalized Chaplygin gas,” Gen. Rel. Grav. 44, 657 (2012); arXiv: 1004.2474.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  35. X. Gao, “Cosmological perturbations and nongaussianities in Hořava-Lifshitz gravity,” arXiv: 0904.4187.

  36. Y. S. Myung and Y. W. Kim, “Thermodynamics of Hořava-Lifshitz black holes,” Eur. Phys. J. C 68, 265 (2010); arXiv: 0905.0179.

    Article  ADS  Google Scholar 

  37. R. G. Cai, L. M. Cao, and N. Ohta, “Thermodynamics of Black Holes in Horava–Lifshitz Gravity,” Phys. Lett. B 679, 504 (2009); arXiv: 0905.0751.

    Article  ADS  MathSciNet  Google Scholar 

  38. Y. S. Myung, “Thermodynamics of black holes in the deformedHořava-Lifshitz gravity,” Phys. Lett. B 678, 127 (2009); arXiv: 0905.0957.

    Article  ADS  MathSciNet  Google Scholar 

  39. H. Nikolic, “Horava–Lifshitz gravity, absolute time, and objective particles in curved space,” Mod. Phys. Lett. A 25, 1595 (2010); arXiv: 0904.3412.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  40. B. R. Majhi, “Hawking radiation and black hole spectroscopy in Horava–Lifshitz gravity,” Phys. Lett. B 686, 49 (2010); arXiv: 0911.3239.

    Article  ADS  MathSciNet  Google Scholar 

  41. R. A. Konoplya, “Towards constraining of the Horava–Lifshitz gravities,” Phys. Lett. B 679, 499 (2009); arXiv: 0905.1523.

    Article  ADS  MathSciNet  Google Scholar 

  42. B. Chen and Q. G. Huang, “Field Theory at a Lifshitz Point,” Phys. Lett. B 683, 108 (2010); arXiv: 0904.4565.

    Article  ADS  MathSciNet  Google Scholar 

  43. D. Blas, O. Pujolas, and S. Sibiryakov, “On the Extra Mode and Inconsistency of Horava Gravity,” JHEP 0910, 029 (2009); arXiv: 0906.3046.

    Article  ADS  MathSciNet  Google Scholar 

  44. C. Charmousis, G. Niz, A. Padilla, and P. M. Saffin, “Strong coupling in Horava gravity,” JHEP 0908, 070 (2009); arXiv: 0905.2579.

    Article  ADS  MathSciNet  Google Scholar 

  45. A. Kobakhidze, “On the infrared limit of Horava’s gravity with the global Hamiltonian constraint,” Phys. Rev. D 82, 064011 (2010); arXiv: 0906.5401.

    Article  ADS  Google Scholar 

  46. C. Bogdanos and E. N. Saridakis, “Perturbative instabilities in Horava gravity,” Class. Quant. Grav. 27, 075005 (2010); arXiv: 0907.1636.

    Article  ADS  MATH  Google Scholar 

  47. D. Blas, O. Pujolas, and S. Sibiryakov, “Consistent extension of Horava gravity,” Phys. Rev. Lett. 104, 181302 (2010); arXiv: 0909.3525.

    Article  ADS  MathSciNet  Google Scholar 

  48. C. Germani, A. Kehagias, and K. Sfetsos, “Relativistic quantum gravity at a Lifshitz point,” JHEP 0909, 060 (2009); arXiv: 0906.1201.

    Article  ADS  MathSciNet  Google Scholar 

  49. J. Bellorin and A. Restuccia, “On the consistency of the Horava theory,” Int. J. Mod. Phys. D 21, 1250029 (2012); arXiv: 1004.0055.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  50. P. Horava and C. M. Melby-Thompson, “General covariance in quantum gravity at a Lifshitz point,” Phys. Rev. D 82, 064027 (2010); arXiv: 1007.2410.

    Article  ADS  Google Scholar 

  51. K. Skenderis, and P. K. Townsend, “Pseudo-supersymmetry and the domain-wall /cosmology correspondence,” J. Phys. A 40, 6733 (2007); arXiv: hep-th/0610253.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  52. S. Kachru, X. Liu, and M. Mulligan, “Gravity duals of Lifshitz-like fixed points,” Phys. Rev. D 78, 106005 (2008); arXiv: 0808.1725.

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos R. Argüelles.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Argüelles, C.R., Grandi, N.E. Membrane solutions to Hořava gravity. Gravit. Cosmol. 23, 349–358 (2017). https://doi.org/10.1134/S020228931704003X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S020228931704003X

Navigation