Skip to main content
Log in

Spatial and Temporal Variations of Snow Accumulation on the Western Elbrus Plateau, the Central Caucasus

  • GLAСIERS AND ICE SHEETS
  • Published:
Water Resources Aims and scope Submit manuscript

Abstract

The data of ground-based high-frequency radar survey on the Western Elbrus plateau (Central Caucasus) in the summer of 2017 showed that snow accumulation in the summit area is characterized by great variability and also has seasonal differences. Analysis of the accumulation fields showed that less snow accumulates in the middle part of the plateau than in the eastern and western parts, and that its distribution over the plateau area is similar. In the warm period of the year, snow accumulation is on average higher than in the cold period, occurs more uniformly over the plateau area, and its distribution is more stable from year to year.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Navarro, F. and Eisen, O., Ground-penetrating radar in glaciological applications, Remote Sensing of Glaciers, Pellikka, P. and Rees, W.G., Eds., London: Taylor & Francis, 2009, pp. 195–229. https://doi.org/10.1201/b10155-12.

  2. Bohleber, P., Sold, L., Hardy, D.R., Schwikowski, M., Klenk, P., Fischer, A., Sirguey, P., Cullen, N.J., Potocki, M., Hoffmann, H., and Mayewski, P., Ground-penetrating radar reveals ice thickness and undisturbed englacial layers at Kilimanjaro’s Northern Ice Field, The Cryosphere, 2017, no. 11, pp. 469–482. https://doi.org/10.5194/tc-11-469-2017

  3. Macheret, Yu.Ya., Radiozondirovanie lednikov (Radio-Echo Sounding of Glaciers), Moscow: Nauchnyi Mir, 2006.

  4. Fujita, S. and Mae, S., Causes and nature of ice-sheet radio-echo internal reflections estimated from the dielectric properties of ice, Ann. Glaciol., 1994, no. 20, pp. 80–86.

  5. Paren, J.G. and Robin, G.d.Q., Internal reflections in polar ice sheets, J. Glaciol., 1975, vol. 14, no. 71, pp. 251–259.

    Article  Google Scholar 

  6. Bogorodsky, V.V., Bentley, C.R., and Gudmandsen, P.E. Radioglyatsiologiya (Radioglaciology), Leningrad: Hydrometeoizdat, 1983.

    Google Scholar 

  7. Eisen, O., Nixdorf, U., Keck, L., and Wagenback, D., Alpine ice cores and ground penetrating radar: combined investigations for glaciological and climatic interpretations of a cold Alpine ice body, Tellus B: Chem. Phys. Meteorol.. 2003, vol. 55, no. 5, pp. 1007–1017. https://doi.org/10.3402/tellusb.v55i5.16394

  8. Machguth, H., Eisen, O., Paul, F., and Hoelzle, M., Strong spatial variability of snow accumulation observed with helicopter-borne GPR on two adjacent Alpine glaciers, Geophys. Res. Lett., 2006, vol. 33, no. L13503. https://doi.org/10.1029/2006GL026576

  9. Konrad, H., Bohleber, P., Wagenbach, D., Vincent, C., and Eisen, O., Determining the age distribution of Colle Gnifetti, Monte Rosa, Swiss Alps, by combining ice cores, ground-penetrating radar and a simple flow model, J. Glaciol., 2013, vol. 59, no. 213, pp. 179–189. https://doi.org/10.3189/2013JoG12J072

  10. Sold, L., Huss, M., Eichler, A., Schwikowski, M., and Hoelzle, M., Unlocking annual firn layer water equivalents from ground-penetrating radar data on an Alpine glacier, The Cryosphere, 2015, no. 9, pp. 1075–1087. https://doi.org/10.5194/tc-9-1075-2015

  11. Pälli, A., Kohler, J.C., Isaksson, E., Moore, J.C., Pinglot, J.F., Pohjola, V.A., and Samuelsson, H., Spatial and temporal variability of snow accumulation using ground penetrating radar and ice cores on a Svalbard glacier, J. Glaciol., 2002, no. 48, pp. 417–424.

  12. Sylvestre, T., Copland, L., Demuth, M., and Sharp, M., Spatial patterns of snow accumulation across Belcher Glacier, Devon Ice Cap, Nunavut, Canada, J. Glaciol., 2013, vol. 59, no. 217, pp. 874–882. https://doi.org/10.3189/2013JoG12J227

  13. Eisen, O., Frezzotti, M., Genthon, C., Isaksson, E., Magand, O., van den Broeke, M.R., Dixon, D.A., Ekaykin, A., Holmlund, P., Kameda, T., Karlof, L., Kaspari, S., Lipenkov, V.Y., Oerter, H., Takahashi, S., and Vaughan, D.G., Ground-based measurements of spatial and temporal variability of snow accumulation in East Antarctica, Rev. Geophys., 2008, vol. 46, no. 2: RG2001. 39 p. https://doi.org/10.1029/2006RG000218

  14. Kruetzmann, N.C., Rack, W., McDonald, A.J., and George, S.E., Snow accumulation and compaction derived from GPR data near Ross Island, Antarctica, The Cryosphere, 2011, no. 5, pp. 391–404. https://doi.org/10.5194/tc-5-391-2011

  15. Mikhalenko, V.N., Kutuzov, S.S., Lavrentiev, I.I., Toropov, P.A., Abramov, A.A., and Polyukhov, A.A., Glaciological studies of the Institute of Geography, RAS, on the Elbrus Mount in 2017, Led i Sneg, 2017, vol. 57, no. 3, p. 292. https://doi.org/10.15356/2076-6734-2017-3-292

  16. Ledniki i klimat El’brusa (Glaciers and the Climate of Elbrus), Mikhalenko, V.N., Ed., Moscow, St. Petersburg: Nestor-Istoriya, 2020.

    Google Scholar 

  17. Mikhalenko, V.N., Kutuzov, S.S., Lavrentiev, I.I., Kunakhovich, M.G., and Tompson, L.G., Elbrus western firn plateau studies: results and prospects, Mater. Glyatsiol. Issled., 2006, no. 99, pp. 185–190.

  18. Kutuzov, S., Shahgedanova, M., Mikhalenko, V., Ginot, P., Lavrentiev, I., Kemp, S., High-resolution provenance of desert dust deposited on Mt. Elbrus, Caucasus in 2009–2012 using snow pit and firn core records, The Cryosphere, 2013, vol. 7, no. 5, pp. 1481–1498. https://doi.org/10.5194/tc-7-1481-2013

  19. Kutuzov, S.S., Mikhalenko, V.N., Shahgedanova, M.V., Ginot, P., Kozachek, A.V., Kuderina, T.M., Lavrentiev, I.I., and Popov, G.V., Ways of far-distance dust transport onto Caucasian glaciers and chemical composition of snow on the Western plateau of Elbrus, Led i Sneg, 2014, vol. 54, no. 3, pp. 5–15. https://doi.org/10.15356/2076-6734-2014-3-5-15

  20. Mikhalenko, V., Sokratov, S., Kutuzov, S., Ginot, P., Legrand, M., Preunkert, S., Lavrentiev, I., Kozachek, A., Ekaykin, A., Faïn, X., Lim, S., Schotterer, U., Lipenkov, V., and Toropov, P., Investigation of a deep ice core from the Elbrus western plateau, the Caucasus, Russia, The Cryosphere, 2015, no. 9, pp. 2253–2270. https://doi.org/10.5194/tc-9-2253-2015

  21. Kozachek, A., Mikhalenko, V., Masson-Delmotte, V., Ekaykin, A., Ginot, P., Kutuzov, S., Legrand, M., Lipenkov, V., and Preunkert, S., Large-scale drivers of Caucasus climate variability in meteorological records and Mt El’brus ice cores, Climate of the Past, 2017, n13: 473–489. https://doi.org/10.5194/cp-13-473-2017

  22. Lavrentiev, I.I., Mikhalenko, V.N., and Kutuzov, S.S., Ice thickness and bedrock relief of the western Elbrus plateau, Led i Sneg, 2010, vol. 2, no. 110, pp. 12–18.

    Google Scholar 

  23. Kutuzov, S., Lavrentiev, I., Smirnov, A., Nosenko, G., and Petrakov, D., Volume changes of Elbrus glaciers from 1997 to 2017, Front. Earth Sci., 2019, vol. 7, no. 153, pp. 1–16. https://doi.org/10.3389/feart.2019.00153

  24. Forte, E., Dossi, M., Colucci, R.R., and Pipan, M., A new fast methodology to estimate the density of frozen materials by means of common offset GPR data. J. Appl. Geophys., 2013, no. 99, pp. 135–145. https://doi.org/10.1016/j.jappgeo.2013.08.013

  25. Kulnitsky, L.M. Gofman, P.A., and Tokarev, M.Yu., Mathematical processing of georadar data in the RA-DEXPRO system, Razv. Okhr. Nedr, 2001, no. 3, pp. 6–11.

  26. Kotlyakov, V.M., Macheret, Yu.Ya., Sosnovsky, A.V., and Glazovsky, A.F., Radiowave propagation speed in a dry and wet snow cover, Led i Sneg, 2017, vol. 57, no. 1, pp. 45–56. https://doi.org/10.15356/2076-6734-2017-1-45-56

  27. Looyenga, H., Dielectric constants of heterogeneous mixtures, Physica, 1965, vol. 31, no. 3, pp. 401–406. https://doi.org/10.1016/0031-8914(65)90045-5

  28. Kovacs, A., Gow, A.J., and Morey, R.M., A Reassessment of the In-Situ Dielectric Constant of Polar Firn, Hanover, N.H., 1993.

    Google Scholar 

  29. Tiuri, M., Sihvola, A., Nyfors, E., and Hallikaiken, M., The complex dielectric constant of snow at microwave frequencies, IEEE J. Oceanic Eng., 1984, vol. 9, no. 5, pp. 377–382. https://doi.org/10.1109/JOE.1984.1145645

  30. Gusmeroli, A., Wolken, G., and Arendt, A., Helicopter-borne radar imaging of snow cover on and around glaciers in Alaska, Ann. Glaciology, 2014, vol. 55, no. 67, pp. 78–88. https://doi.org/10.3189/2014AoG67A029

  31. Lavrentiev, I.I., Kutuzov, S.S., Glazovsky, A.F., Macheret, Yu.Ya., Osokin, N.I., Sosnovsky, A.V., Chernov, R.A., and Cherniakov, G.A., Snow thickness on Austre Grønfjordbreen, Svalbard, from radar measurements and standard snow surveys, Led i Sneg, 2018, vol. 58, no. 1, pp. 5–20. https://doi.org/10.15356/2076-6734-2018-1-5-20

  32. Lapazaran, J.J., Otero, J., Martin-Español, A., and Navarro, F.J., On the errors involved in ice-thickness estimates I: ground-penetrating radar measurement errors., J. Glaciol., 2016, vol. 62, pp. 1008–1020. https://doi.org/10.1017/jog.2016.93

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to P. Ginot (ISTerre, Grenoble, France) for chemical analyses of snow and firn samples from a shallow core drilled in 2017.

Funding

Field studies were carried out with the support of the Russian science foundation, Grant no. 17-17-01270, cartographic work was funded within the State assignment scientific theme (no. 0148-2019-0004) and interpretation of an ice core drilling data was carried out within the framework of the Megagrant (Agreement no. 075-15-2021-599 dated 06/08/2021).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. I. Lavrentiev.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lavrentiev, I.I., Kutuzov, S.S., Mikhalenko, V.N. et al. Spatial and Temporal Variations of Snow Accumulation on the Western Elbrus Plateau, the Central Caucasus. Water Resour 49 (Suppl 1), S1–S11 (2022). https://doi.org/10.1134/S0097807822070090

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0097807822070090

Keywords:

Navigation