Skip to main content
Log in

Toric origami structures on quasitoric manifolds

  • Published:
Proceedings of the Steklov Institute of Mathematics Aims and scope Submit manuscript

Abstract

We construct quasitoric manifolds of dimension 6 and higher which are not equivariantly homeomorphic to any toric origami manifold. All necessary topological definitions and combinatorial constructions are given, and the statement is reformulated in discrete geometrical terms. The problem reduces to the existence of planar triangulations with certain coloring and metric properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Ayzenberg, “Buchstaber numbers and classical invariants of simplicial complexes,” arXiv: 1402.3663 [math.CO].

  2. A. Ayzenberg, M. Masuda, S. Park, and H. Zeng, “Cohomology of toric origami manifolds with acyclic proper faces,” arXiv: 1407.0764 [math.AT].

  3. V. M. Buchstaber and T. E. Panov, “Combinatorics of simplicial cell complexes and torus actions,” Tr. Mat. Inst. im. V.A. Steklova, Ross. Akad. Nauk 247, 41–58 (2004) [Proc. Steklov Inst. Math. 247, 33–49 (2004)].

    Google Scholar 

  4. V. M. Buchstaber and T. E. Panov, “Toric topology,” arXiv: 1210.2368 [math.AT].

  5. V. M. Buchstaber, T. E. Panov, and N. Ray, “Spaces of polytopes and cobordism of quasitoric manifolds,” Moscow Math. J. 7 (2), 219–242 (2007).

    MATH  MathSciNet  Google Scholar 

  6. A. Cannas da Silva, V. Guillemin, and A. R. Pires, “Symplectic origami,” Int. Math. Res. Not. 2011 (18), 4252–4293 (2011); arXiv: 0909.4065 [math.SG].

    MATH  Google Scholar 

  7. M. W. Davis and T. Januszkiewicz, “Convex polytopes, Coxeter orbifolds and torus actions,” Duke Math. J. 62 (2), 417–451 (1991).

    Article  MATH  MathSciNet  Google Scholar 

  8. C. Delaunay, “On hyperbolicity of toric real threefolds,” Int. Math. Res. Not. 2005 (51), 3191–3201 (2005).

    Article  MATH  MathSciNet  Google Scholar 

  9. T. Delzant, “Hamiltoniens périodiques et images convexes de l’application moment,” Bull. Soc. Math. France 116, 315–339 (1988).

    MATH  MathSciNet  Google Scholar 

  10. H. N. Djidjev, “On the problem of partitioning planar graphs,” SIAM. J. Algebraic Discrete Methods 3 (2), 229–240 (1982).

    Article  MATH  MathSciNet  Google Scholar 

  11. N. Erokhovets, “Buchstaber invariant of simple polytopes,” arXiv: 0908.3407 [math.AT].

  12. T. S. Holm and A. R. Pires, “The topology of toric origami manifolds,” Math. Res. Lett. 20 (5), 885–906 (2013); arXiv: 1211.6435 [math.SG].

    Article  MATH  MathSciNet  Google Scholar 

  13. J.-F. Le Gall, “Large random planar maps and their scaling limits,” in Proc. 5th Eur. Congr. Math., Amsterdam, 2008 (Eur. Math. Soc., Zürich, 2010), pp. 253–276.

    Chapter  Google Scholar 

  14. J.-F. Le Gall, “Uniqueness and universality of the Brownian map,” Ann. Probab. 41 (4), 2880–2960 (2013); arXiv: 1105.4842 [math.PR].

    Article  MATH  MathSciNet  Google Scholar 

  15. J.-F. Le Gall and F. Paulin, “Scaling limits of bipartite planar maps are homeomorphic to the 2-sphere,” Geom. Funct. Anal. 18, 893–918 (2008); arXiv:math/0612315 [math.PR].

    Article  MATH  MathSciNet  Google Scholar 

  16. Z. Lü and T. Panov, “Moment–angle complexes from simplicial posets,” Cent. Eur. J. Math. 9 (4), 715–730 (2011); arXiv: 0912.2219 [math.AT].

    Article  MATH  MathSciNet  Google Scholar 

  17. M. Masuda and S. Park, “Toric origami manifolds and multi-fans,” Tr. Mat. Inst. im. V.A. Steklova, Ross. Akad. Nauk 286, 331–346 (2013) [Proc. Steklov Inst. Math. 286, 308–323 (2013)]; arXiv: 1305.6347 [math.SG].

    Google Scholar 

  18. T. Oda, Convex Bodies and Algebraic Geometry: An Introduction to the Theory of Toric Varieties (Springer, Berlin, 1988).

    MATH  Google Scholar 

  19. R. Osserman, “The isoperimetric inequality,” Bull. Am. Math. Soc. 84 (6), 1182–1238 (1978).

    Article  MATH  MathSciNet  Google Scholar 

  20. T. Yoshida, “Local torus actions modeled on the standard representation,” Adv. Math. 227 (5), 1914–1955 (2011).

    Article  MATH  MathSciNet  Google Scholar 

  21. G. M. Ziegler, Lectures on Polytopes (Springer, New York, 2007).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anton A. Ayzenberg.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ayzenberg, A.A., Masuda, M., Park, S. et al. Toric origami structures on quasitoric manifolds. Proc. Steklov Inst. Math. 288, 10–28 (2015). https://doi.org/10.1134/S0081543815010022

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0081543815010022

Keywords

Navigation