Skip to main content
Log in

Evaluating the Possibility of Increasing the Capacity Factor of Grid-Connected Photovoltaic Power Plants

  • METALS AND STRENGTH ANALYSIS
  • Published:
Thermal Engineering Aims and scope Submit manuscript

Abstract—

The influence of two methods for increasing the amount of solar radiation incident on the solar power plant (SPP) photovoltaic array surface—the use of Sun tracking systems (trackers) and bifacial photovoltaic modules—on the capacity factor (CF) value is estimated for the entire territory of Russia. The CF values are estimated for a few types of photovoltaic modules under the climatic conditions of Russia by means of dynamic simulation in the TRNSYS code. The actinometric and climatic data from the NASA POWER long-term satellite observations database with the 1° × 1° latitude-longitude spatial resolution were used. The photovoltaic modules were described by a five-parametric model, the parameters of which were determined from the module passport data provided by manufacturers. Electricity outputs and CF values were compared for SPPs equipped with vertical-axis and tilted-axis trackers and SPPs equipped with fixed south-oriented photovoltaic modules at different tilt angles. It has been determined that the maximal effect of trackers use can be achieved in the arctic zone of Russia, where the amount of electricity generated by an SPP can be increased by 70–80%. In certain southern regions of the country, the amount of electricity generated in the case of using trackers can be increased by as much as 55%. It is shown that the best effect is obtained in the case of using fixed bifacial modules or bifacial modules equipped with tilt-axis trackers (the increase of CF is up to 4% abs.). By using vertically oriented bifacial modules, the CF value can be increased to some extent in high latitudes. In moving toward lower latitudes, the gain in the CF by using the module rear side decreases until it becomes fully compensated by the loss resulting of their nonoptimal orientation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. On the Mechanism of Using Renewable Energy Sources in the Wholesale Electricity and Capacity Market, RF Government Resolution of May 28, 2013 No. 449 (March 10, 2020 edition). http://www.consultant.ru/document/ cons_doc_LAW_146916

  2. O. I. Malikova and M. A. Zlatnikova, “State policy in the field of renewable energy development,” Gos. Upr., Elektron. Vestn., No. 72, 5–30 (2019).

  3. Electric Power Monthly. Capacity Factors for Utility Scale Generators Primarily Using Non-Fossil Fuels. https:// www.eia.gov/electricity/monthly/epm_table_grapher. php?t=epmt_6_07_b

  4. Analysis of Indicators of Balances of Electric Energy and Power of the UES of Russia for the 4th Quarter of 2018 (Sist. Oper. Edinoi Energ. Sist., Moscow, 2019) [in Russian].

  5. Analysis of Indicators of Balances of Electric Energy and Power of the UES of Russia for the 4th Quarter of 2019 (Sist. Oper. Edinoi Energ. Sist., Moscow, 2020) [in Russian].

  6. Analysis of Indicators of Balances of Electric Energy and Power of the UES of Russia for the 4th Quarter of 2020 (Sist. Oper. Edinoi Energ. Sist., Moscow, 2021) [in Russian].

  7. Renewable Power Generation Costs in 2019 (International Renewable Energy Agency (IRENA), Abu Dhabi, 2020).

  8. IEC 61215-2:2016. Terrestrial Photovoltaic (PV) Modules — Design Qualification and Type Approval. Part 2: Test Procedures (International Electrotechnical Commission, Geneva, 2016).

  9. GOST R 56980-2016. Crystalline Silicon Terrestrial Photovoltaic Modules. Test Methods (Standartinform, Moscow, 2016).

  10. A. Boretti, S. Castelletto, W. Al-Kouz, and J. Nayfeh, “Capacity factors of solar photovoltaic energy facilities in California, annual mean and variability,” E3S Web Conf. 181, 02004 (2020). https://doi.org/10.1051/e3sconf/202018102004

  11. A. Z. Hafez, A. M. Yousef, and N. M. Harag, “Solar tracking systems: Technologies and trackers drive types — A review,” Renewable Sustainable Energy Rev. 91, 754–782 (2018). https://doi.org/10.1016/j.rser.2018.03.094

    Article  Google Scholar 

  12. R. Guerrero-Lemus, R. Vega, T. Kim, A. Kimm, and L. E. Shephard, “Bifacial solar photovoltaics — A technology review,” Renewable Sustainable Energy Rev. 60, 1533–1549 (2016). https://doi.org/10.1016/j.rser.2016.03.041

    Article  Google Scholar 

  13. D. Berrian, J. Libal, M. Klenk, H. Nussbaumer, and R. Kopecek, “Performance of bifacial PV arrays with fixed tilt and horizontal single-axis tracking: Comparison of simulated and measured data,” IEEE J. Photovoltaics 9, 1583–1589 (2019). https://doi.org/10.1109/JPHOTOV.2019.2924394

    Article  Google Scholar 

  14. C. D. Rodríguez-Gallegos, M. Bieri, O. Gandhi, J. P. Singh, T. Reindl, and S. K. Panda, “Monofacial vs bifacial Si-based PV modules: Which one is more cost-effective?,” Sol. Energy 176, 412–438 (2018). https://doi.org/10.1016/j.solener.2018.10.012

    Article  Google Scholar 

  15. C. D. Rodríguez-Gallegos, L. Haohui, O. Gandhi, J. P. Singh, V. Krishnamurthy, A. Kumar, J. S. Stein, Wang Shitao, L. Li, T. Reindl, and I. M. Peters, “Global techno-economic performance of bifacial and tracking photovoltaic systems,” Joule 4, 1514–1541 (2020). https://doi.org/10.1016/j.joule.2020.05.005

    Article  Google Scholar 

  16. IEC 62817:2014. International Standard. Photovoltaic Systems — Design Qualification of Solar Trackers (International Electrotechnical Commission, Geneva, 2014).

  17. GOST R 57229-2016. Photovoltaic Systems. Solar Trackers. General Specifications (Standartinform, Moscow, 2016).

  18. C. B. Maia, A. G. Ferreira, and S. M. Hanriot, “Evaluation of a tracking flat-plate solar collector in Brazil,” Appl. Therm. Eng. 73, 953–962 (2014). https://doi.org/10.1016/j.applthermaleng.2014.08.052

    Article  Google Scholar 

  19. S. G. Obukhov and I. A. Plotnikov, “Choosing the parameters and analyzing the efficiency of solar tracking systems,” Izv. Tomsk. Politekh. Univ., Inzh. Georesur. 329 (10), 95–106 (2018).

    Google Scholar 

  20. D. S. Strebkov and D. S. Penjiyev, “Solar power plants with parabolic trough concentrators in the desert area of Karakum,” Appl. Sol. Energy, 55 (3), 195–206 (2019).

    Article  Google Scholar 

  21. M. V. Kitaeva, A. V. Yurchenko, A. V. Skorokhodov, and A. V. Okhorzina, “Solar tracking systems,” Vestn. Nauki Sib., No. 3 (4), 61–67 (2012).

  22. M. Z. Jacobson and V. Jadhav, “World estimates of PV optimal tilt angles and ratios of sunlight incident upon tilted and tracked PV panels relative to horizontal panels,” Sol. Energy 169, 55–66 (2018). https://doi.org/10.1016/j.solener.2018.04.030

    Article  Google Scholar 

  23. S. Guo, T. M. Walsh, and M. Peters, “Vertically mounted bifacial photovoltaic modules: A global analysis,” Energy 61, 447–454 (2013). https://doi.org/10.1016/j.energy.2013.08.040

    Article  Google Scholar 

  24. X. Sun, M. R. Khan, C. Deline, and M. A. Alam, “Optimization and performance of bifacial solar modules: A global perspective,” Appl. Energy 212, 1601–1610 (2017). https://doi.org/10.1016/j.apenergy.2017.12.041

    Article  Google Scholar 

  25. M. R. Khan, A. Hanna, X. Sun, and M. A. Alam, “Vertical bifacial solar farms: Physics, design, and global optimization,” Appl. Energy 206, 240–248 (2017). https://doi.org/10.1016/j.apenergy.2017.08.042

    Article  Google Scholar 

  26. S. E. Frid, V. M. Simonov, N. V. Lisitskaya, N. R. Avezova, and A. E. Khaitmukhamedov, “Efficiency of solar trackers and bifacial photovoltaic panels for southern regions of the Russian Federation and the Republic of Uzbekistan,” Appl. Sol. Energy 56 (6), 425–430 (2020).

  27. J. A. Duffie and W. A. Beckman, Solar Engineering of Thermal Processes (Wiley, Hoboken, N.J., 2006; Intellekt, Dolgoprudnyi, 2013).

  28. TRNSYS — Transient System Simulation Tool. https:// trnsys.com/

  29. H. S. Rauschenbach, Solar Cell Array Design Handbook: The Principles and Technology of Photovoltaic Energy Conversion (Van Nostrand Reinhold, New York, 1980; Energoatomizdat, Moscow, 1983).

  30. W. De Soto, S. A. Klein, and W. A. Beckman, “Improvement and validation of a model for photovoltaic array performance,” Sol. Energy 80, 78–88 (2006). https://doi.org/10.1016/j.solener.2005.06.010

    Article  Google Scholar 

  31. D. T. Cotfas, P. A. Cotfas, and S. Kaplanis, “Methods to determine the dc parameters of solar cells: A critical review,” Renewable Sustainable Energy Rev. 28, 588–596 (2013). https://doi.org/10.1016/j.rser.2013.08.017

    Article  Google Scholar 

  32. A. M. Humada, S. Y. Darweesh, K. G. Mohammed, M. Kamil, S. F. Mohammed, N. K. Kasim, T. A. Tahseen, O. I. Awad, and S. Mekhile, “Modeling of PV system and parameter extraction based on experimental data: Review and investigation,” Sol. Energy 199, 742–760 (2020). https://doi.org/10.1016/j.solener.2020.02.068

    Article  Google Scholar 

  33. TRNSYS 17. V. 4. Mathematical Reference (Solar Energy Laboratory — Univ. of Wisconsin-Madison, 2009). https://web.mit.edu/parmstr/Public/TRNSYS/ 04-MathematicalReference.pdf.

  34. Suntech Hypro STP300-310S-20/Wfw. https://www. enfsolar.com/pv/panel-datasheet/crystalline/39647

  35. Suntech Polycrystalline STP270-280–20/Wfw. https:// www.enfsolar.com/pv/panel-datasheet/crystalline/39646

  36. 300–320 W Photovoltaic Modules Specification. https:// www.hevelsolar.com/loaded/catalog/goods/13b1c2c2-b900-11e9-80f4-005056826d7b_Spetsifikatsiya na fotoelektricheskie moduli 300-320Vt.pdf

  37. Suntech Ranked in the “Global Top 20 Companies on PV 2020”. https://www.suntech-power.com/suntech-ranked-in-the-global-top-20-companies-on-pv-2020/

  38. NASA Prediction of Worldwide Energy Resource (POWER). https://power.larc.nasa.gov/

  39. A. B. Tarasenko, S. V. Kiseleva, O. S. Popel, S. E. Frid, T. S. Gabderakhmanova, N. R. Avezova, V. M. Simonov, and M. Zh. Suleimanov, “Comparative analysis of simulation models for network photovoltaic power plants ,” Appl. Sol. Energy 56 (3), 212–218 (2020).

  40. Full KSTAR PV Inverter Catalogue. https://bsleco.com/ wp-content/uploads/2018/04/PV-Inverter-Catalogue-2018.pdf

  41. Suntech HyPro STP 300-310S-20/Wfw-MX. https:// www.enfsolar.com/pv/panel-datasheet/crystalline/43262

  42. Hevel has Supplied Coca-Cola Switzerland with Double-Sided Solar Modules. https://www.hevelsolar.com/ about/news/khevel-postavila-shveicarskomu-podrazdeleniyu-coca-cola-dvustoronnie-solnechnye-moduli/

  43. B. Marion, S. MacAlpine, C. Deline, A. Asgharzadeh, F. Toor, D. Riley, J. Stein, and C. Hansen., “A practical irradiance model for bifacial PV modules,” preprint NREL/CP5J00-67847 (National Renewable Energy Laboratory (NREL), Golden, Colorado, 2017).

  44. Hevel Solar Heterojunction PV module HVL-385/HJT, HVL-390/HJT, HVL-395/HJT. https://www.hevelsolar. com/loaded/catalog/goods/c446d3aa-758e-11ea8103-005056826d7b_Datasheet_385-395_GG%20(EN).pdf

Download references

Funding

This work was supported by the Ministry of Science and Higher Education of the Russian Federation (State Assignment No. 075-01056-22-00).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. E. Frid.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by V. Filatov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Frid, S.E., Lisitsksaya, N.V. Evaluating the Possibility of Increasing the Capacity Factor of Grid-Connected Photovoltaic Power Plants. Therm. Eng. 69, 535–544 (2022). https://doi.org/10.1134/S0040601522060039

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040601522060039

Keywords:

Navigation