Skip to main content
Log in

Energodynamics of Radiation and the Chemical Bonding as a Resonant-Selective Interaction

  • Published:
Theoretical Foundations of Chemical Engineering Aims and scope Submit manuscript

Abstract

The myth about special quantum mechanics, different from classical mechanics, has been debunked. In fact, there is a branch of classical mechanics, which belongs to wave theory and considers a particle-like wave, rather than a particle having the properties of a wave. New quantum mechanics, free from unnecessary entities, assumptions, and hypotheses, makes it possible to get rid of many accumulated contradictions in theoretical physics, physical chemistry, and quantum chemistry and expands the methodological base of engineering disciplines by opening up new ways and means for solving practical problems, as shown by the example of consideration of chemical bonding as a resonant-selective interaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

REFERENCES

  1. Dorokhov, I.N. and Etkin, V.A., System–energy–dynamic approach as a means to overcome the crisis of theoretical physics. Victory at the 1st World Science Championship in Dubai, August, 2023, Vestn. Mezhdunar. Akad. Sist. Issled. Inf. Ekol. Ekon., 2023, vol. 25, part 2, p.4.

    Google Scholar 

  2. Dorokhov, I.N., System–energy dynamic analysis as a scientific direction (report at the scientific council of the D.I. Mendeleev Russian State Technical University), Vestn. Mezhdunar. Akad. Sist. Issled. Inf. Ekol. Ekon., 2023, vol. 25, part 1, pp.23–43.

    Google Scholar 

  3. Dorokhov, I.N., The place of energy dynamics in the scientific foundations of chemical technology, Teor. Osn. Khim. Tekhnol., 2023, vol. 57, no. 5, pp. 563–580.

    Google Scholar 

  4. Dorokhov, I.N., Sistemno–energodinamicheskii analiz prirodnykh I tekhnologicheskikh processov (System–Energy–Dynamic Analysis of Natural and Technological Processes), Moscow: LENAND, 2023.

  5. Magnitskii, N.A., Matematicheskaya teoriya fizicheskogo vacuuma (Mathematical Theory of Physical Vacuum), Moscow: Inst. Mikroekon., 2010.

  6. Magnitskii, N.A., Teoriya szhimaemogo oscilliruyushchego efira (The Theory of Compressible Oscillating Ether), Moscow: Lenand, 2021.

  7. Magnitskii, N.A., Teoriya dinamicheskogo khaosa (Theory of Dynamic Chaos), Moscow: URSS, 2021.

  8. Gankin, V.Yu. and Gankin, Yu.V., Kak obrazuyutsya khimicheskaya svyaz’ i protekayut khimicheskie reaktsii (How Chemical Bonds Form and Chemical Reactions Proceed), Boston: ITC, 1998.

  9. Etkin V.A. On wave nature of matter, World Sci. News, 2017, vol. 69, pp. 220–235.

    CAS  Google Scholar 

  10. Bohm, D., Quantum Theory, New York: Dover Publ. Inc., 1979.

    Google Scholar 

  11. Ivanov, Yu.N., Ritmodinamika (Rhytmodynamics), Moscow: IATs Energiya, 2007.

  12. N.A. Koltovoi. Personal Website. Scientific studies of abnormal phenomena. https://koltovoi.nethouse.ru/page/941255. Cited October, 31, 2023.

  13. Maxwell, J.C., Treatise on Electricity and Magnetism, Oxford: Clarendon Press, 1873.

    Google Scholar 

  14. Kompton, A., Scattering X-Rays as particles, in Eishteinovskii sbornik 1986–1990 (The Einstein Collection 1986–1990), Moscow: Nauka, 1990, pp. 398–405.

  15. Hertz, H., Studies on the Propagation of the Electric Power, Leipzig: Johann Ambrosius Barth, 1892.

    Google Scholar 

  16. Stoletov, A.G., Vvedenie v akustiku i optiku (Introduction to Acoustics and Optics), Moscow: Mosk. Univ., 1895.

  17. Einstein, A., Über einen die Erzeugung und Verwandlung des Lichtes betreffenden heuristischen Gesichtspunkt, Ann. Phys., 1905, vol. 17, ser. 4, pp. 133–140.

  18. Davisson, C. and Germer, L.H., Diffraction of electrons by a crystal of nickel, Phys. Rev., 1927, vol. 30, no. 6, pp. 705–740. https://doi.org/10.1103/PhysRev.30.705

    Article  ADS  CAS  Google Scholar 

  19. Tesla, N., Lektsii. Stat’i, (Lectures. Articles), Moscow: Tesla Print. 2003.

  20. Russell, J.S., Report of the Committee on Waves, Appointed by the British Association at Bristol in 1836, London: Taylor, 1838.

    Google Scholar 

  21. Zabusky, N.J. and Kruskal M.D. Interaction of “solitons” in a collisionless plasma and the recurrence of initial states, Phys. Rev. Lett., 1965, vol. 15, no. 6, pp. 240–243. https://doi.org/10.1103/PhysRevLett.15.240

    Article  ADS  Google Scholar 

  22. Shroedinger, E., Novye puti v fizike (New Ways in Physics), Moscow: Nauka, 1971.

  23. Jeans, J.H. The New Background of Science, New York: Macmillan Co., 1933.

    Google Scholar 

  24. Tartakovskii, P.S., Eksperimental’nye osnovaniya volnovoi teorii materii (Experimental Foundations of the Matter Wave Theory of Matter), Moscow: GTTI, 1932.

  25. NASA Jet Propulsion Laboratory/California Institute of Technology Official Website. http://www.jpl.nasa.gov/wise/newsfeatures.cfm?release=2011–02.

  26. Hozepa S. Long–Delayed Echoes Again. http:// web.archive.org/web/20091112202151//01.

  27. Etkin, V.A., Termokinetika (termodinamika neravnovesnykh protsessov peenosa i preobrazovaniya energii (Thermokinetics (Thermodynamics of Non-Equilibrium Processes of Energy Transfer and Conversion), Tolyatti: Mezhdunar. Akad. Biznesa Bank. Dela, 1999.

  28. Gel’fer, Ya.M., Istoriya i metodologiya termodinamiki i statisticheskoi fiziki (History and Methodology of Thermodynamics and Statistical Physics), Moscow: Vysshaya Shkola, 1981.

  29. Planck, M., Uber das Gesetz der Energieverteilung im Normalspektrum, Ann. Phys., 1901, vol. 309, no. 3, pp. 553–563. https://doi.org/10.1002/andp.19013090310

    Article  Google Scholar 

  30. Jeans J.H. On the lows of radiation, Proc. R. Soc. London, 1905, vol. 76, ser. A, no. 513, pp. 545–552. https://doi.org/10.1098/rspa.1905.0060

  31. Einstein, A., On the development of our views on the essence and structure of radiation, in Sobranie nauchnykh trudov (Collection of Scientificc Works), Moscow: Nauka, 1966, vol. 3, pp. 181–195.

  32. Crawford, F.S., Jr., Waves. Berkeley Physics Course, New York: McGraw-Hill, 1968, vol. 3.

    Google Scholar 

  33. Etkin, V., Rethinking Plank`s radiation law, Global J. Phys., 2017, vol. 5, no. 2, pp. 547–553.

    Google Scholar 

  34. Planck, M., Zur geschichte der auffindung des physikajischen wirkungsquantums, Naturwissenschaften, 1943, vol. 31, no. 14, pp. 153–159. https://doi.org/10.1007/BF01475738

    Article  ADS  MathSciNet  CAS  Google Scholar 

  35. Etkin, V.A., On the potential and driving force of radiant heat transfer, Vestn. Doma Uch. Khaify, 2010, vol. 20, pp. 2–6.

    Google Scholar 

  36. Landau, L.D., Lifshits, E.M., and Pitaevskii, L.P., Teoreticheskayz fizika (Theoretical Physics), vol. 10: Fizicheskaya kinetika (Physical Kinetics), Moscow: Nauka, 1979.

  37. Einstein, A., Über einen die erzeugung und verwandlung des lichtes betreffenden heuristischen gesichtspunkt, Ann. Phys., 1905, vol. 322, no. 6, pp. 132–148. https://doi.org/10.1002/andp.19053220607

    Article  Google Scholar 

  38. Kvartal’nov, V.V. and Perevozchikov, N.F., Discovery of the “non-physical” component of OQG radiation, Parapsikhol. Psikhofiz., 1999, no. 2, pp. 64–67. https://textarchive.ru/c-1975555.html. Cited October 31, 2023.

  39. Etkin, V.A., About nature of the selective interaction, Vestn.Doma Uch. Khaify, 2012, vol. 29, pp. 2–8.

    Google Scholar 

  40. Lyakishev, V.K., Perfil’ev, M.S., and Kharlan, A.R., Resonant wave contribution to chemical kinetics, Yunyi Uch., 2020, no. 3, pp. 57–59.

  41. https://moluch.ru/young/archive/33/1952/. Cited October 31, 2023. Martinson, L.K. and Smirnov, E.V., Kvantovaya fizika (The Quantum Physics), Moscow: MGTU N.E. Baumana, 2004.

  42. Shironosov, V.G., Rezonans v fizike, khimii i biologii (Resonance in Physics, Chemistry and Biology), Izhevsk: Udmurtskii Universitet, 2000.

  43. Kuznetsov, L.D., Demitrenko, L.M., Rabina, P.D., and Sokolinskii, Yu.A., Sintez ammiaka (Synthesis of Ammonia), Kuznetsov, L.D., Ed., Moscow: Khimiya, 1982.

    Google Scholar 

  44. Hsieh, M. and Brenowitz, M., Comparison of the DNA association kinetics of the Lac repressor tetramer, its dimeric mutant LacIadi, and the native dimeric Gal repressor, J. Biol. Chem., 1997, vol. 272, no. 35, pp. 22092–22096. https://doi.org/10.1074/jbc.272.35.22092

    Article  PubMed  CAS  Google Scholar 

  45. Etkin, V.A., Unified method for finding forces and their fields. http://www.etkin.iri-as.org/Unufied %20method.pdf. Cited November 15, 2023.

  46. Etkin, V.A., Paralogizmy termodinamiki. O nedostatkakh izlozheniya i trudnostyakh ponimaniya termodinamiki (Paralogisms of Thermodynamics. On the Shortcomings of the Presentation and the Difficulties of Understanding Thermodynamics), Saabrücken: Palmarium Academic Publishing, 2015.

  47. Etkin, V.A., Theoretical Foundations of Fuel-Free Energetics, Toronto: Altaspera, 2013.

    Google Scholar 

Download references

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. N. Dorokhov.

Ethics declarations

The author of this work declares that he has no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dorokhov, I.N. Energodynamics of Radiation and the Chemical Bonding as a Resonant-Selective Interaction. Theor Found Chem Eng 57, 1338–1349 (2023). https://doi.org/10.1134/S0040579523060027

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040579523060027

Keywords:

Navigation