Skip to main content
Log in

Study on Lithium Extraction from Salt Lake Brines

  • Published:
Theoretical Foundations of Chemical Engineering Aims and scope Submit manuscript

Abstract

The purpose of the present study is to investigate the extraction of lithium from southern Tunisian brines. Density and concentration of Lithium in those brines were reported. Also, pondered rates of Lithium and the major elements in brines were investigated. Obtained results indicate that Lithium exist in those brines as traces. The optimization of certain parameters is required in this study. To extract Lithium from natural brines two steps were investigated. Firstly, we have used Ammonium Oxalate ((NH4)2(C2O4)⋅2H2O) to precipitate only Magnesium ion: in this procedure, three parameters were investigated (Mg/Oxalate, T (°C) and tstirring). The maximum values were found to be Mg/Ox = 0.66, T = Treflux = 100°C and tstirring ≥ 30 min. Secondly, we have used Aluminum Chloride (AlCl3⋅6H2O) in order to adsorbing lithium ions by Aluminum hydroxide. In this procedure, four parameters were investigated (pH, Al/Li, tstirring and T (°C)). Maximum values of these parameters are 7.2, 4.7, 3 h and 25°C respectively. Finally, to separate Lithium from Aluminum solution, we have used an exchange ion resin. This solution including two ions under cationic form (Al3+ and Li+). Al3+ was complexed into [Al(C2O4)3]3– using Ammonium Oxalate ions (\({{{\text{C}}}_{{\text{2}}}}{\text{O}}_{4}^{{2 - }}\)) and removed from solution using an anion exchange resin (Amberlite IRA-402). Thus, a theoretical study was carried out to determine the appropriate pH for separation. After Aluminum ions complexation by ammonium oxalate, Ox/Al molar ratio and pH was studied. Optimal values of these parameters are 3 and 4 respectively and the recovery of Li+ is set to be 98.5%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Diouf, B. and Pode, R., Potential of lithium-ion batteries in renewable energy, Renewable Energy, 2015, vol. 76, pp. 375–380. https://doi.org/10.1016/j.renene.2014.11.058

    Article  Google Scholar 

  2. Lemaire, J., Svecova, L., Lagallarde, F., Laucournet, R., and Thivel, P.X., Lithium recovery from aqueous solution by sorption/desorption, Hydrometallurgy, 2014, vol. 143, pp. 1–11. https://doi.org/10.1016/j.hydromet.2013.11.006

    Article  CAS  Google Scholar 

  3. David, R.E., Aniruddha, J., and Edwin, R., Phase field kinetics of lithium electrodeposits, J. Power Sources, 2014, vol. 272, pp. 581–594. https://doi.org/10.1016/j.jpowsour.2014.08.062

    Article  CAS  Google Scholar 

  4. Lin, F., Xu, X.P, Miao, S., Zheng, W.D., Shu, J., Hui, L., Xu, L.X., Chen, L.L., and Ren, Y.L., The potential dependent electrochemical impedance spectroscopy and lithium diffusion kinetics of LiFePO4, Solid State Ionics, 2014, vol. 265, pp. 49–54. https://doi.org/10.1016/j.ssi.2014.06.022

    Article  CAS  Google Scholar 

  5. Pratima, M. and Pandey, B.D., Extraction of lithium from primary and secondary sources by pretreatment, leaching and separation: A comprehensive review, Hydrometallurgy, 2014, vol. 150, pp. 192–208. https://doi.org/10.1016/j.hydromet.2014.10.012

    Article  CAS  Google Scholar 

  6. Sun, J.Z., Dong, Y., and Kong, C.Y., Manufacture of sodium-free lithium chloride from salt lake brine, Sep. Purif. Technol., 2014, vol. 136, pp. 309–313. https://doi.org/10.1016/j.seppur.2014.09.017

    Article  CAS  Google Scholar 

  7. James, R.H. and Palmer, M.R., The lithium isotope composition of international rock standards, Chem. Geol., 2000, vol. 166, pp. 319–326. https://doi.org/10.1016/S0009-2541(99)00217-X

    Article  CAS  Google Scholar 

  8. Davidson, C.F., Recovery of Lithium from Clay by Selective Chlorination, Report of Investigations 8523, Washington, D.C.: U.S. Dept. of the Interior, Bureau of Mines, 1981.

    Google Scholar 

  9. May, J.T., Witkowsky, D.S., and Seidel, D.C., Extracting Lithium from Clays by Roast-Leach Treatment, Report of Investigations 1980, Washington, D.C.: U.S. Dept. of the Interior, Bureau of Mines, 1980.

    Google Scholar 

  10. Rezza, I., Salinas, E., Calvente, V., Benuzzi, D., and Tosetti, M.I., Extraction of lithium from spodumene by bioleaching, Lett. Appl. Microbiol., 1997, vol. 25, pp. 172–176. https://doi.org/10.1046/j.1472-765X.1997.00199.x

    Article  CAS  Google Scholar 

  11. Marcinčaková, R., Kaduková, J., Mražíková, A., Velgosová, O., and Vojtko, M., Lithium bioleaching from lepidolite using the yeast Rhodotorula rubra, Inz. Miner., 2015, vol. 16, no. 1, pp. 1–6. https://www.researchgate.net/publication/282951310

  12. Abe, M. and Chitrakar, R., Synthetic inorganic ion-exchange materials. XLV. Recovery of lithium from seawater and hydrothermal water by titanium(IV) antimonate cation exchanger, Hydrometallurgy, 1987, vol. 19, no. 1, pp. 117–128. https://doi.org/10.1016/0304-386X(87)90045-4

    Article  CAS  Google Scholar 

  13. Epstein, J.A., Feist, E.M., Zmora, J., and Marcus, Y., Extraction of lithium from the Dead Sea, Hydrometallurgy, 1981, vol. 6, pp. 269–275. https://doi.org/10.1016/0304-386X(81)90044-X

    Article  CAS  Google Scholar 

  14. Kaplan, D., Process for the extraction of lithium from Dead Sea solutions, Isr. J. Chem., 1963, vol. 1, pp. 115–120. https://doi.org/10.1002/ijch.196300021

    Article  CAS  Google Scholar 

  15. Ebensperger, A., Maxwell, P., and Moscoso, C., The lithium industry: Its recent evolution and future prospects, Resour. Policy, 2005, vol. 30, no. 3, pp. 218–231. https://doi.org/10.1016/j.resourpol.2005.09.001

    Article  Google Scholar 

  16. Risacher, F., Alonso, H., and Salazar, C., The origin of brines and salts in Chilean salars: A hydrochemical review, Earth-Sci. Rev., 2003, vol. 63, pp. 249–293. https://doi.org/10.1016/S0012-8252(03)00037-0

    Article  CAS  Google Scholar 

  17. Zhao, X., Zhang, Q., Wu, H., Hao, X., Wang, L., and Huang, X., Extraction of lithium from salt lake brine, Prog. Chem., 2017, vol. 29, pp. 796–808. https://doi.org/10.7536/PC170313

    Article  CAS  Google Scholar 

  18. Somrani, A., Hamzaoui, A.H., and Pontie, M., Study on lithium separation from salt lake brines by nanofiltration (NF) and low pressure reverse osmosis (LPRO), Desalination, 2013, vol. 317, pp. 184–192. https://doi.org/10.1016/j.desal.2013.03.009

    Article  CAS  Google Scholar 

  19. Büchel, K.H., Moretto, H.H., and Woditsch, P., Industrial Inorganic Chemistry: Second, Completely Revised Edition, New York: Wiley-VCH, 2000.

    Book  Google Scholar 

  20. Perrin, R. and Scharff, J.-P., Chimie industrielle, Paris: DUNOD, 1999, 2nd ed., pp. 213–215.

    Google Scholar 

  21. Peiró, L.T, Méndez, G.V., and Ayres, R.U., Lithium: Sources, production, uses, and recovery outlook, JOM, 2013, vol. 65, pp. 986–996. https://doi.org/10.1007/s11837-013-0666-4

    Article  CAS  Google Scholar 

  22. Rapport sur les essais préliminaires et “bench scale” avec la saumure de Zarzis “Sulmag/ONM 1982.”

  23. Hamzaoui, A.H., M’Nif, A., and Rokbani, R., Mineral salts removal and lithium traces determination in highly concentrated solutions and natural brines, Talanta, 2006, vol. 70, pp. 847–851. https://doi.org/10.1016/j.talanta.2006.02.011

    Article  CAS  Google Scholar 

  24. Hamzaoui, A.H., M’Nif, A., Hammi, H., and Rokbani, R., Contribution to the lithium recovery from brine, Desalination, 2003, vol. 158, pp. 221–224. https://doi.org/10.1016/S0011-9164(03)00455-7

    Article  CAS  Google Scholar 

  25. Hamzaoui, A.H., Jamoussi, B., and M’Nif, A., Lithium recovery from highly concentrated solutions: Response surface methodology (RSM) process parameters optimization, Hydrometallurgy, 2008, vol. 90, pp. 1–7. https://doi.org/10.1016/j.hydromet.2007.09.005

    Article  CAS  Google Scholar 

  26. Hamzaoui, A.H, Hammi, H., M’Nif, A., Operating conditions for lithium recovery from natural brines, Russ. J. Inorg. Chem., 2007, vol. 52, pp. 1859–1863. https://doi.org/10.1134/S0036023607120091

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Somrani.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Somrani, A., Mohamed, Z., Hamzaoui, A.H. et al. Study on Lithium Extraction from Salt Lake Brines. Theor Found Chem Eng 56, 1153–1157 (2022). https://doi.org/10.1134/S0040579522060252

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040579522060252

Keywords:

Navigation