Skip to main content
Log in

Piezoelectric Actuated Stirrer for Solid Drug Powder-Liquid Mixing

  • Published:
Theoretical Foundations of Chemical Engineering Aims and scope Submit manuscript

Abstract

This paper introduces a piezoelectric actuated stirrer-based active mixer for solid powder-liquid mixing at a macroscopic scale. The input excitation voltage and bending vibration mode frequency of a piezoelectric patch controls the stirrer’s movement. The stirrer vibrates accordingly and exchanges vibration energy into the test fluid consisting of solid powder-liquid. Mixing happens due to intense fluid circulation and dispersion of solid particles in all directions. The experimentation was conducted at the input excitation voltage of 50–150 VP-P, at a frequency 9.05–165.80 Hz, and the beam’s insertion height in the test fluid at 5–20 mm. The proposed mixer utilizes the first, second, and third bending mode vibration frequencies and mixes three different properties dyes discretely in aqueous and alcoholic solvents namely DI (deionized) water and ethanol. Mixing execution relies upon variation in the mixed solution’s concentration, and a UV-Visible spectrophotometer measures the absorbance of mixture. The detailed study outcomes recommend using third bending mode vibration frequency, 150 VP-P, and at a 5 mm insertion depth of the stirrer in test fluid, powerful mixing occurs. It is about three-fold more than the mixture obtained in the first mode for same conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

Similar content being viewed by others

REFERENCES

  1. Maluta, F., Montante, G., and Paglianti, A., Analyis of liquid mixing and solid dissolution for pharmaceutical manufacturing in stirred tanks, Chem. Eng. Trans., 2019, vol. 74, p. 949. https://doi.org/10.3303/CET1974159

    Article  Google Scholar 

  2. Batchelor, H.K. and Marriott, J.F., Formulations for children: Problems and solutions, Br. J. Clin. Pharmacol., 2015, vol. 79, p. 405. https://doi.org/10.1111/bcp.12268

    Article  Google Scholar 

  3. Eggl, M.F. and Schmid, P.J., Mixing enhancement in binary fluids using optimised stirring strategies, J. Fluid Mech., 2020. https://doi.org/10.1017/jfm.2020.448

  4. Santoveña, A., Suárez-González, J., Martin-Rodríguez, C., and Fariña, J.B., Formulation design of oral pediatric Acetazolamide suspension: Dose uniformity and physico-chemical stability study, Pharm. Dev. Technol., 2017, vol. 22, p. 191. https://doi.org/10.1080/10837450.2016.1175475

    Article  CAS  Google Scholar 

  5. Horiuchi, S., Uddin, M.A., Kato, Y., and Kikuchi, N., Liquid/liquid mixing pattern in a mechanically-stirred vessel, ISIJ Int., 2014, vol. 54, p. 82. https://doi.org/10.2355/isijinternational.54.82

    Article  CAS  Google Scholar 

  6. Bowler, A.L., Bakalis, S., and Watson, N.J., A review of in-line and on-line measurement techniques to monitor industrial mixing processes, Chem. Eng. Res. Des., 2020, vol. 153, p. 463. https://doi.org/10.1016/j.cherd.2019.10.045

    Article  CAS  Google Scholar 

  7. Yamaga, Y., Kanatani, M., and Nomura, S., Usefulness of a rotation-revolution mixer for mixing powder-liquid reline material, J. Prosthodontic Res., 2015, vol. 59, p. 71. https://doi.org/10.1016/j.jpor.2014.11.002

    Article  Google Scholar 

  8. Kozic, M.S., Ristic, S.S., Linic, S.L.J., Hil, T., and Stetic-Kozic, S., Numerical analysis of rotational speed impact on mixing process in a horizontal twin-shaft paddle batch mixer with non-Newtonian fluid, FME Trans., 2016, vol. 44, p. 115. https://doi.org/10.5937/fmet1602115K

    Article  Google Scholar 

  9. Atiemo-Obeng, V.A., Penney, W.R. and Armenante, P., Solid-liquid mixing, ch. 10 of Handbook of Industrial Mixing: Science and Practice, New York: Wiley-Interscience, 2004. p. 543. https://doi.org/10.1002/0471451452.ch10

  10. Venables, H.J. and Wells, J.I., Powder mixing, Drug Dev. Ind. Pharm., 2001, vol. 27, p. 599. https://doi.org/10.1081/DDC-100107316

    Article  CAS  Google Scholar 

  11. Ligus, G. and Wasilewski, M., Impact of stirrer rotational speed on liquid circulation in a rectangular vessel—a study applying DPIV, E3S Web Conf., 2018, vol. 44, Article 00096. https://doi.org/10.1051/e3sconf/20184400096

  12. Mashimo, T., Piezoelectric rotational mixer based on a first bending vibration mode, IEEE Trans. Ultrason. Ferroelectr. Freq. Control., 2013, vol. 60, no. 10, p. 2098. https://doi.org/10.1109/TUFFC.2013.2800

    Article  Google Scholar 

  13. Lu, L.H., Ryu, K.S., and Liu, C., A magnetic microstirrer and array for microfluidic mixing, J. Microelectromech. Syst., 2002, vol. 11, p. 462. https://doi.org/10.1109/JMEMS.2002.802899

    Article  CAS  Google Scholar 

  14. Ohol, R.M. and Vasuki, B., Macroscopic mixer for disparate property liquid–liquid mixing in aqueous sanitizer preparation, Chem. Pap., 2021. https://doi.org/10.1007/s11696-021-01886-3

  15. Cai, G., Xue, L., Zhang, H., and Lin, J., A review on micromixers, Micromachines, 2017, vol. 8, no. 9, p. 274. https://doi.org/10.3390/mi8090274

    Article  Google Scholar 

  16. Rahbarshahlan, S., Ghaffarzadeh Bakhshayesh, A., Rostamzadeh Khosroshahi, A., and Aligholami, M., Interface study of the fluids in passive micromixers by altering the geometry of inlets, Microsyst. Technol., 2021, vol. 27, p. 2791. https://doi.org/10.1007/s00542-020-05067-2

    Article  Google Scholar 

  17. Ohol, R.M. and Vasuki, B., Experimental evaluation of liquid mixing using piezo actuated pump system, Instrum. Exp. Tech., 2020, vol. 63, p. 758. https://doi.org/10.1134/S0020441220050206

    Article  CAS  Google Scholar 

  18. Gidde, R.R., Pawar, P.M., Ronge, B.P., Misal, N.D., Kapurkar, R.B., and Parkhe, A.K., Evaluation of the mixing performance in a planar passive micromixer with circular and square mixing chambers, Microsyst. Technol., 2018, vol. 24, p. 2599. https://doi.org/10.1007/s00542-017-3686-0

    Article  CAS  Google Scholar 

  19. Lobasov, A.S., Shebeleva, A.A., and Minakov, A.V., Numerical investigation of the effect of obstacles on the thermal exchange and mixing efficiency of fluids in microchannels, in 2019 International Science and Technology Conference “EastConf”, Vladivostok, Russia, March 1–2, 2019, p. 1. https://doi.org/10.1109/Eastconf.2019.8725325

  20. Duryodhan, V.S., Chatterjee, R., Singh, S.G., and Agrawal, A., Mixing in planar spiral microchannel, Exp. Therm. Fluid Sci., 2017, vol. 89, p. 119. https://doi.org/10.1016/j.expthermflusci.2017.07.024

    Article  CAS  Google Scholar 

  21. Brunig, R., Winkler, A., Guhr, G. and Schmidt, H., Active mixing in microfluidic systems using surface acoustic waves, in 2011 IEEE International Ultrasonics Symposium, Orlando, FL, USA, October 18–21, 2011, p. 794. https://doi.org/10.1109/ULTSYM.2011.0194

  22. Kardous, F., Yahiaoui, R., Aoubiza, B., and Manceau, J.F., Acoustic mixer using low frequency vibration for biological and chemical applications, Sensors Actuators, A, 2014, vol. 211, p. 19. https://doi.org/10.1016/j.sna.2014.03.003

    Article  CAS  Google Scholar 

  23. Nouri, D., Zabihi-hesari, A., and Passandideh-fard, M., Rapid mixing in micromixers using magnetic field, Sensors Actuators A, 2017, vol. 255, p. 79. https://doi.org/10.1016/j.sna.2017.01.005

    Article  CAS  Google Scholar 

  24. Shanko, E.-S., van de Burgt, Y., Anderson, P.D., and den Toonder, J.M.J., Microfluidic magnetic mixing at low Reynolds numbers and in stagnant fluids, Micromachines, 2019, vol. 10, no. 11, p. 731. https://doi.org/10.3390/mi10110731

    Article  Google Scholar 

  25. Barabash, V.M., Abiev, R.S., and Kulov, N.N., Theory and practice of mixing: A review, Theor. Found. Chem. Eng., 2018, vol. 52, no. 4, p. 473. https://doi.org/10.1134/S004057951804036X

    Article  CAS  Google Scholar 

  26. Ober, T.J., Foresti, D., and Lewis, J.A., Active mixing of complex fluids at the microscale, Proc. Natl. Acad. Sci. U. S. A., 2015, vol. 112, p. 12293. https://doi.org/10.1073/pnas.1509224112

    Article  CAS  Google Scholar 

  27. Lee, C.Y., Chang, C.L., Wang, Y.N., and Fu, L.M., Microfluidic mixing: A review, Int. J. Mol. Sci., 2011, vol. 12, p. 3263. https://doi.org/10.3390/ijms12053263

    Article  CAS  Google Scholar 

  28. Ohol, R.M. and Vasuki, B., Design and implementation of combined liquid pump and active–passive mixer for a drug delivery system utilizing two 1-DOF piezoelectric actuated cantilever beams, Mater. Today Proc., 2021, p. 1. https://doi.org/10.1016/j.matpr.2021.09.275

  29. Rampalli, S., Dundi, T.M., Chandrasekhar, S., Raju, V.R.K., and Chandramohan, V.P., Numerical evaluation of liquid mixing in a serpentine square convergent-divergent passive micromixer, Chem. Prod. Process Model., 2020, vol. 15, p. 1. https://doi.org/10.1515/cppm-2019-0071

    Article  CAS  Google Scholar 

  30. Rahimi, M., Azimi, N., Parsamogadam, M.A., Rahimi, A., and Masahy, M.M., Mixing performance of T, Y, and oriented Y-micromixers with spatially arranged outlet channel: Evaluation with Villermaux/Dushman test reaction, Microsyst. Technol., 2017, vol. 23, p. 3117. https://doi.org/10.1007/s00542-016-3118-6

    Article  CAS  Google Scholar 

  31. Ward, K. and Fan, Z.H., Mixing in microfluidic devices and enhancement methods, J. Micromech. Microeng., 2015, vol. 25, Article 094001. https://doi.org/10.1088/0960-1317/25/9/094001

    Article  CAS  Google Scholar 

  32. Bayareh, M., Ashani, M.N., and Usefian, A., Active and passive micromixers: A comprehensive review, Chem. Eng. Process., Process Intensif., 2020, vol. 147, Article 107771. https://doi.org/10.1016/j.cep.2019.107771

    Article  CAS  Google Scholar 

  33. Kordas, M., Story, G., Konopacki, M., and Rakoczy, R., Study of mixing time in a liquid vessel with rotating and reciprocating agitator, Ind. Eng. Chem. Res., 2013, vol. 52, p. 13818. https://doi.org/10.1021/ie303086r

    Article  CAS  Google Scholar 

  34. Zhang, Z. and Chen, G., Liquid mixing enhancement by chaotic perturbations in stirred tanks, Chaos, Solitons Fractals, 2008, vol. 36, p. 144. https://doi.org/10.1016/j.chaos.2006.06.024

    Article  CAS  Google Scholar 

  35. Çabuk, H. and Ata, Ş., Rotation mixing-assisted liquid–liquid microextraction: A new microextraction approach for the determination of priority phenols in water samples, Anal. Methods, 2016, vol. 8, p. 3123. https://doi.org/10.1039/c6ay00062b

    Article  Google Scholar 

  36. Zhang, P., Chen, G., Duan, J., and Wang, W., Mixing characteristics in a vessel equipped with cylindrical stirrer, Results Phys., 2018, vol. 10, p. 699. https://doi.org/10.1016/j.rinp.2018.07.024

    Article  Google Scholar 

  37. Duarte, D.P., Nogueira, R.N., and Bilro, L., Low cost color assessment of turbid liquids using supervised learning data analysis—Proof of concept, Sens. Actuators, A, 2020, vol. 305, Article 111936. https://doi.org/10.1016/j.sna.2020.111936

    Article  CAS  Google Scholar 

  38. Doroodchi, E., Sathe, M., Evans, G., and Moghtaderi, B., Liquid–liquid mixing using micro-fluidised beds, Chem. Eng. Res. Des., 2013, vol. 91, p. 2235. https://doi.org/10.1016/j.cherd.2013.06.024

    Article  CAS  Google Scholar 

  39. Delaplace, G., Bouvier, L., Moreau, A., Guerin, R., and Leuliet, J.C., Determination of mixing time by colourimetric diagnosis—Application to a new mixing system, Exp. Fluids, 2004, vol. 36, p. 437. https://doi.org/10.1007/s00348-003-0741-7

    Article  CAS  Google Scholar 

  40. Zhang, C., Siegel, S.H., Yenuganti, S., and Zhang, H., Sensitivity analysis of piezo-driven stepped cantilever beams for simultaneous viscosity and density measurement, Smart Mater. Struct., 2019, vol. 28. https://doi.org/10.1088/1361-665X/ab1706

  41. Shih, W.Y., Li, X., Gu, H., Shih, W.H., and Aksay, I.A., Simultaneous liquid viscosity and density determination with piezoelectric unimorph cantilevers, J. Appl. Phys., 2001, vol. 89, p. 1497. https://doi.org/10.1063/1.1287606

    Article  CAS  Google Scholar 

  42. Dereshgi, A.H., Dal, H., and Yildiz, M.Z., Piezoelectric micropumps: State of the art review, Microsyst. Technol., 2021, vol. 27, p. 4127. https://doi.org/10.1007/s00542-020-05190-0

    Article  Google Scholar 

  43. Yang, Z., Matsumoto, S., Goto, H., Matsumoto, M., and Maeda, R., Ultrasonic micromixer for microfluidic systems, Sens. Actuators, A, 2001, vol. 93, p. 266. https://doi.org/10.1016/S0924-4247(01)00654-9

    Article  CAS  Google Scholar 

  44. Kumar, S., Srivastava, R., and Srivastava, R.K., Design and analysis of smart piezo cantilever beam for energy harvesting, Ferroelectrics, 2016, vol. 505, p. 159. https://doi.org/10.1080/00150193.2016.1255848

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. M. Ohol.

Ethics declarations

On behalf of all authors, the corresponding author states that there is no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ohol, R.M., Vasuki, B. Piezoelectric Actuated Stirrer for Solid Drug Powder-Liquid Mixing. Theor Found Chem Eng 56, 1100–1115 (2022). https://doi.org/10.1134/S0040579522060148

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040579522060148

Keywords:

Navigation