Skip to main content
Log in

Yang–Baxter equation in all dimensions and universal qudit gates

  • Research Articles
  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

We construct solutions of the Yang–Baxter equation in any dimension \(d\ge 2\) by directly generalizing the previously found solutions for \(d=2\). We equip those solutions with unitarity and entangling properties. Being unitary, they can be turned into \(2\)-qudit quantum logic gates for qudit-based systems. The entangling property enables each of those solutions, together with all \(1\)-qudit gates, to form a universal set of quantum logic gates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Onsager, “Crystal statistics. I. A two-dimensional model with an order-disorder transition,” Phys. Rev., 65, 117–149 (1944).

    Article  ADS  MathSciNet  Google Scholar 

  2. C. N. Yang, “Some exact results for the many-body problem in one dimension with repulsive delta-function interaction,” Phys. Rev. Lett., 19, 1312–1315 (1967).

    Article  ADS  MathSciNet  Google Scholar 

  3. R. J. Baxter, “Solvable eight-vertex model on an arbitrary planar lattice,” Phylos. Trans. Roy. Soc. London Ser. A, 289, 315–346 (1978).

    Article  ADS  MathSciNet  Google Scholar 

  4. M. Jimbo (ed.), Yang–Baxter Equation in Integrable Systems (Advanced Series in Mathematical Physics, Vol. 10), World Sci., Singapore (1990).

    Google Scholar 

  5. J. Hietarinta, “All solutions to the constant quantum Yang–Baxter equation in two dimensions,” Phys. Lett. A, 165, 245–251 (1992).

    Article  ADS  MathSciNet  Google Scholar 

  6. J. H. H. Perk and H. Au-Yang, “Yang–Baxter equations,” in: Encyclopedia of Mathematical Physics, Vol. 5 (J.-P. Françoise, G. L. Naber, and S. T. Tsou, eds.), Elsevier, Oxford (2006), pp. 465–473.

    Chapter  Google Scholar 

  7. P. K. Aravind, “Borromean entanglement of the GHZ state,” in: Potentiality, Entanglement and Passion-at-a-Distance (Boston Studies in the Philosophy of Science, Vol. 194, R. S. Cohen, M. Horne, and J. Stachel, eds.), Springer, Dordrecht (1997), pp. 53–59.

    Chapter  Google Scholar 

  8. H. A. Dye, “Unitary solutions to the Yang–Baxter equation in dimension four,” Quantum Inf. Process., 2, 117–152 (2003).

    Article  MathSciNet  Google Scholar 

  9. L. H. Kauffman and S. J. Lomonaco, Jr., “Quantum entanglement and topological entanglement,” New J. Phys., 4, 73, 18 pp. (2002); “Braiding operators are universal quantum gates,” 6, 134, 41 pp. (2004).

    Article  ADS  MathSciNet  Google Scholar 

  10. Y. Zhang, L. H. Kauffman, and M.-L. Ge, “Universal quantum gates, Yang–Baxterizations and Hamiltonians,” Int. J. Quantum Inf., 3, 669–678 (2005); “Yang–Baxterizations, universal quantum gates and Hamiltonians,” Quantum Inf. Process., 4, 159–197 (2005).

    Article  Google Scholar 

  11. J.-L. Chen, K. Xue, and M.-L. Ge, “Braiding transformation, entanglement swapping, and Berry phase in entanglement space,” Phys. Rev. A, 76, 042324, 6 pp. (2007).

    Article  ADS  Google Scholar 

  12. Y. Zhang, and M.-L. Ge, “GHZ states, almost-complex structure and Yang–Baxter equation,” Quantum Inf. Process., 6, 363–379 (2007).

    Article  MathSciNet  Google Scholar 

  13. M.-L. Ge, K. Xue, R.-Y. Zhang, and Q. Zhao, “Yang–Baxter equations and quantum entanglements,” Quantum Inf. Process., 15, 5211–5242 (2016).

    Article  ADS  MathSciNet  Google Scholar 

  14. C.-L. Ho, A. I. Solomon, and C.-H. Oh, “Quantum entanglement, unitary braid representation and Temperley–Lieb algebra,” Europhys. Lett., 92, 30002, 5 pp. (2010).

    Article  ADS  Google Scholar 

  15. E. Pinto, M. A. S. Trindade, and J. D. M. Vianna, “Quasitriangular Hopf algebras, braid groups and quantum entanglement,” Int. J. Quantum Inf., 11, 13500652, 13 pp. (2013).

    Article  MathSciNet  Google Scholar 

  16. Mo-Lin Ge, Li-Wei Yu, Kang Xue, and Qing Zhao, “Solutions of the Yang–Baxter equation associated with a topological basis and applications in quantum information,” Theoret. and Math. Phys., 181, 1145–1163 (2014).

    Article  ADS  MathSciNet  Google Scholar 

  17. G. Alagic, M. Jarret, and S. P. Jordan, “Yang–Baxter operators need quantum entanglement to distinguish knots,” J. Phys. A: Math. Theor., 49, 075203, 12 pp. (2016).

    Article  ADS  MathSciNet  Google Scholar 

  18. A. Pourkia and J. Batle, “Cyclic groups and quantum logic gates,” Ann. Phys., 373, 10–27 (2016).

    Article  ADS  MathSciNet  Google Scholar 

  19. K. Zhang and Y. Zhang, “Quantum teleportation and Birman–Murakami–Wenzl algebra,” Quantum Inf. Process., 16, 52, 34 pp. (2017).

    Article  ADS  MathSciNet  Google Scholar 

  20. V. F. R. Jones, “A polynomial invariant for links via von Neumann algebras,” Bull. Amer. Math. Soc. (N. S.), 12, 103–111 (1985).

    Article  MathSciNet  Google Scholar 

  21. V. G. Turaev, “The Yang–Baxter equation and invariants of links,” Invent. Math., 92, 527–553 (1988).

    Article  ADS  MathSciNet  Google Scholar 

  22. Y. Cheng, M.-L. Ge, and K. Xue, “Yang–Baxterization of braid group representation,” Commun. Math. Phys., 136, 195–208 (1991).

    Article  ADS  MathSciNet  Google Scholar 

  23. Ch. Kassel, “Quantum Groups,” (Graduate Texts in Mathematics, Vol. 155), Springer, New York (1995).

    Book  Google Scholar 

  24. M. Freedman, A. Kitaev, M. J. Larsen, and Z. Wang, “Topological quantum computation,” Bull. Amer. Math. Soc. (N. S.), 40, 31–38 (2003).

    Article  MathSciNet  Google Scholar 

  25. C. Nayak, S. H. Simon, A. Stern, M. Freedman, and S. Das Sarma, “Non-Abelian anyons and topological quantum computation,” Rev. Modern Phys., 80, 1083–1159 (2008).

    Article  ADS  MathSciNet  Google Scholar 

  26. N. Kolganov and An. Morozov, “Quantum \(\mathscr{R}\)-matrices as universal qubit gates,” JETP Lett., 111, 623–624 (2020).

    Article  Google Scholar 

  27. N. Kolganov, S. Mironov, and An. Morozov, “Large \(k\) topological quantum computer,” Nucl. Phys. B, 987, 116072, 17 pp. (2023).

    Article  MathSciNet  Google Scholar 

  28. A. Barenco, C. H. Bennett, R. Cleve et al., “Elementary gates for quantum computation,” Phys. Rev. A, 52, 3457–3467 (1995).

    Article  ADS  Google Scholar 

  29. J.-L. Brylinski and R. Brylinski, “Universal quantum gates,” in: Mathematics of Quantum Computation (R. K. Brylinski and G. Chen, eds.), Chapman and Hall, Boca Raton, FL (2002), pp. 101–116.

    Chapter  Google Scholar 

  30. E. C. Rowell, Y. Zhang, Y.-S. Wu, and M.-L. Ge, “Extraspecial two-groups, generalized Yang– Baxter equations and braiding quantum gates,” Quantum Inf. Comput., 10, 685–702 (1010).

    MathSciNet  Google Scholar 

  31. R. S. Chen, “Generalized Yang–Baxter equations and braiding quantum gates,” J. Knot Theory Ramifications, 21, 1250087, 18 pp. (2012).

    Article  MathSciNet  Google Scholar 

  32. S. Khachatryan, “On the solutions to the multi-parametric Yang–Baxter equations,” Nucl. Phys. B, 883, 629–655 (2014).

    Article  ADS  MathSciNet  Google Scholar 

  33. K. Hao, J. Cao, G.-L. Li, W.-L. Yang, K. Shi, and Y. Wang, “Exact solution of an \(su(n)\) spin torus,” J. Stat. Mech. Theory Exp., 2016, 073104, 19 pp. (2016).

    Article  MathSciNet  Google Scholar 

  34. C.-L. Ho and T. Deguchi, “Multi-qudit states generated by unitary braid quantum gates based on Temperley–Lieb algebra,” Europhys. Lett., 118, 40001, 9 pp. (2017); arXiv: 1611.06772.

    Article  ADS  Google Scholar 

  35. M. de Leeuw, A. Pribytok, and P. Ryan, “Classifying integrable spin-1/2 chains with nearest neighbour interactions,” J. Phys. A: Math. Theor., 52, 505201, 17 pp. (2019).

    Article  MathSciNet  Google Scholar 

  36. T. Gombor and B. Pozsgay, “Integrable spin chains and cellular automata with medium-range interaction,” Phys. Rev. E, 104, 054123, 30 pp. (2021).

    Article  ADS  MathSciNet  Google Scholar 

  37. V. G. Bardakov and D. V. Talalaev, “Extensions of Yang–Baxter sets,” Theoret. and Math. Phys., 215, 609–621 (2023).

    Article  ADS  MathSciNet  Google Scholar 

  38. D. Kaszlikowski, D. K. L. Oi, M. Christand et al., “Quantum cryptography based on qutrit Bell inequalities,” Phys. Rev. A., 67, 012310, 4 pp. (2003).

    Article  ADS  Google Scholar 

  39. B. P. Lanyon, M. Barbieri, M. P. Almeida et al., “Simplifying quantum logic using higher- dimensional Hilbert spaces,” Nature Phys., 5, 134–140 (2008).

    Article  ADS  Google Scholar 

  40. M. Neeley, M. Ansmann, R. C. Bialczak et al., “Emulation of a quantum spin with a superconducting phase qudit,” Science, 325, 722–725 (2009).

    Article  ADS  Google Scholar 

  41. M. Kues, C. Reimer, P. Roztocki et al., “On-chip generation of high-dimensional entangled quantum states and their coherent control,” Nature, 546, 622–626 (2017).

    Article  ADS  Google Scholar 

  42. A. R. Shlyakhov, V. V. Zemlyanov, M. V. Suslov, A. V. Lebedev, G. S. Paraoanu, G. B. Lesovik, and G. Blatter, “Quantum metrology with a transmon qutrit,” Phys. Rev. A., 97, 022115, 9 pp. (2018).

    Article  ADS  Google Scholar 

  43. V. A. Soltamov, C. Kasper, A. V. Poshakinskiy et al., “Excitation and coherent control of spin qudit modes in silicon carbide at room temperature,” Nature Commun., 10, 1678, 8 pp. (2019).

    Article  ADS  Google Scholar 

  44. Y. Wang, Z. Hu, B. C. Sanders, and S. Kais, “Qudits and high-dimensional quantum computing,” Front. Phys., 8, 589504, 24 pp. (2020).

    Article  Google Scholar 

Download references

Acknowledgments

The author thanks the esteemed referees for their invaluable feedback, which helped to greatly increase the quality and the presentation of this work. The author also thanks Dr. Mansur Saburov for constructive and encouraging discussions. Moreover, I thank Dr. Sinan Kapcak for introducing me to SageMath, which was very useful in generating large matrices and testing the validity of some formulas. Last but not least, I thank Mrs. Elena Ryzhova for helping me by patiently checking specific patterns in large matrices and proofreading the final manuscript, and for fruitful conversations.

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Pourkia.

Ethics declarations

The author of this work declares that he has no conflicts of interest.

Additional information

Prepared from an English manuscript submitted by the author; for the Russian version, see Teoreticheskaya i Matematicheskaya Fizika, 2024, Vol. 219, pp. 17–31 https://doi.org/10.4213/tmf10618.

Publisher’s note. Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pourkia, A. Yang–Baxter equation in all dimensions and universal qudit gates. Theor Math Phys 219, 544–556 (2024). https://doi.org/10.1134/S0040577924040032

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040577924040032

Keywords

Navigation