Skip to main content
Log in

Negative Polarization of Celestial Bodies: Review and Computer Simulation

  • Published:
Solar System Research Aims and scope Submit manuscript

Abstract

A brief review of the main causes of a negative degree of linear polarization of radiation scattered by regolith surfaces of atmosphereless cosmic bodies and ensembles of particles in the opposition region is presented. The results of computer simulation are provided, which made it possible to calculate the polarization degree of light scattered by pairs of irregular particles. The distance between the particles changed, which made it possible to obtain a visual representation of the total effect of the nature of negative polarization in the case of two-particle scattering (scattering in which two particles participate). Previously, a similar study was carried out for the case of two spherical particles, and showed that two-particle scattering by spheres only changes the degree of linear polarization in absolute value. We showed that two-particle scattering by irregular particles has a variable effect on the degree of linear polarization, both increasing and decreasing it. We also demonstrated that two-particle scattering by irregular particles can form a negative polarization even if the light scattered by a single particle is positively polarized. Therefore, in theoretical studies of the appearance of negative polarization, it is important to take into account two-particle scattering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

REFERENCES

  1. Akkermans, E., Wolf, P., Maynard, R., and Maret, G., Theoretical study of the coherent backscattering of light by disordered media, J. Phys. (Paris), 1988, vol. 49, pp. 77–98.

    Article  ADS  Google Scholar 

  2. Amic, E., Luck, J.M., and Nieuwenhuizen, T.M., Multiple Rayleigh scattering of electromagnetic waves, J. Phys. I, 1997, vol. 7, no. 3, pp. 445–483. https://doi.org/10.1051/jp1:1997170

    Article  Google Scholar 

  3. Barabanenkov, Y.N., Kravtsov, Y.A., Ozrin, V.D., and Saichev, A.I., II enhanced backscattering in optics, Prog. Opt., 1991, vol. 29, pp. 65–197. https://doi.org/10.1016/S0079-6638(08)70006-4

    Article  ADS  Google Scholar 

  4. Barabashev, N.P., Bestimmung der Erdalbedo und des Reflexionsgesetztes fur die Oberflache der Mondmeere. Theorie der Rillen, Astron. Nachr., 1922, vol. 217, pp. 445–452.

    Article  ADS  Google Scholar 

  5. Berrocal, E., Churmakov, D.Y., Romanov, V.P., Jermy, M.C., and Meglinski, I.V., Crossed source-detector geometry for a novel spray diagnostic: Monte Carlo simulation and analytical results, Appl. Opt., 2005, vol. 44, no. 13, pp. 2519–2529. https://doi.org/10.1364/AO.44.002519

    Article  ADS  Google Scholar 

  6. Bohren, C.F. and Huffman, D.R., Absorption and Scattering of Light by Small Particles, Wiley-VCH, 1998.

    Book  Google Scholar 

  7. Bowell, E., Dollfus, A., and Geake, J.E., Polarimetric properties of the lunar surface and its interpretation. Part 5: Apollo 14 and Luna 16 lunar samples, Lunar and Planet. Sci. Conf. Proc. Houston, 1972, vol. 3, p. 3103.

  8. Dollfus, A. and Wolff, M., Theory and application of the negative branch of polarization for airless planetary objects, Lunar and Planet. Sci. Conf. XII. Abstracts, 1981, pp. 232–234.

  9. Dollfus, A., Wolff, M., Geake, J.E., Lupishko, D.F., and Dougherty, L.M., Photopolarimetry of asteroids, Asteroids II, Tucson: Univ. Arizona Press, 1989, pp. 594–616.

    Google Scholar 

  10. Draine, B.T. and Flatau, P.J., Discrete-dipole approximation for scattering calculations, J. Opt. Soc. Am. A, 1994, vol. 11, no. 4, pp. 1491–1499. https://doi.org/10.1364/JOSAA.11.001491

    Article  ADS  Google Scholar 

  11. Farafonov, V.G., Il’in, V.B., Prokopjeva, M.S., Tulegenov, A.R., and Ustimov, V.I., A spheroidal model of light scattering by nonspherical particles, Opt. Spectrosc., 2019, vol. 126, no. 4, pp. 443–449. https://doi.org/10.1134/S0030400X19040076

    Article  Google Scholar 

  12. Frattin, E., Munoz, O., Moreno, F., Nava, J., Escobar-Cerezo, J., Gomez, Martin, J.C., Guirado, D., Cellino, A., Coll, P., Raulin, F., Bertini, I., Cremonese, G., Lazzarin, M., Naletto, G., and La Forgia, F., Experimental phase function and degree of linear polarization of cometary dust analogues, Mon. Not. R. Astron. Soc., 2019, vol. 484, no. 2, pp. 2198–2211. https://doi.org/10.1093/mnras/stz129

    Article  ADS  Google Scholar 

  13. Geake, J.E. and Geake, M., A remote sensing method for sub-wavelength grains on planetary surfaces by optical polarimetry, Mon. Not. R. Astron. Soc., 1990, vol. 245, pp. 46–55. https://doi.org/10.1093/mnras/245.1.46

    Article  ADS  Google Scholar 

  14. Geake, J.E., Geake, M., and Zellner, B.H., Experiments to test theoretical models of the polarization of light by rough surfaces, Mon. Not. R. Astron. Soc., 1984, vol. 210, pp. 89–112. https://doi.org/10.1093/mnras/210.1.89

    Article  ADS  Google Scholar 

  15. Gorodnichev, E.E., Kondratiev, K.A., and Rogozkin, D.B., Coherent backscattering of light from a faraday medium, Phys. Rev. B, 2022, vol. 105, no. 10, p. 104208. https://doi.org/10.1103/PhysRevB.105.104208

    Article  ADS  Google Scholar 

  16. Hapke, B.W., A theoretical photometric function for the lunar surface, J. Geophys. Res., 1963, vol. 68, pp. 4571–4586. https://doi.org/10.1029/JZ068i015p04571

    Article  ADS  Google Scholar 

  17. Hapke, B.W., Theory of Reflectance and Emittance Spectroscopy, Cambridge: Cambridge Univ. Press, 1993.

    Book  Google Scholar 

  18. Hapke, B.W., Bidirectional reflectance spectroscopy. 6. Effects of porosity, Icarus, 2008, vol. 195, no. 2, pp. 918–926. https://doi.org/10.1016/j.icarus.2008.01.003

    Article  ADS  Google Scholar 

  19. Hopfield, J.J., Mechanism of lunar polarization, Science, 1966, vol. 151, no. 3716, pp. 1380–1381. https://doi.org/10.1126/science.151.3716.1380

    Article  ADS  Google Scholar 

  20. Horton, C.W. and Watson, R.B., On the diffraction of radar waves by a semi-infinite conducting screen, J. Appl. Phys., 1950, vol. 21, no. 1, pp. 16–21. https://doi.org/10.1063/1.1699412

    Article  ADS  Google Scholar 

  21. Hovenier, J.W. and van der Mee, C.V.M., Fundamental relationships relevant to the transfer of polarized light in a scattering atmosphere, Astron. Astrophys., 1983, vol. 128, no. 1, pp. 1–16.

    ADS  MathSciNet  MATH  Google Scholar 

  22. Jentzsch, F., Über die Beugung des Lichtesan Stahlschneiden, Ann. der Phys., 1927, vol. 389, no. 18, pp. 292–312. https://doi.org/10.1002/andp.19273891806

    Article  ADS  Google Scholar 

  23. Johnson, H.L. and Morgan, W.W., Fundamental stellar photometry for standards of spectral type on the revised system of the Yerkes spectral atlas, Astrophys. J., 1953, vol. 117, no. 3, pp. 313–352. https://doi.org/10.1086/145697

    Article  ADS  Google Scholar 

  24. Kiselev, N.N. and Chernova, G.P., On a possibly new form of the polarization–phase dependence for comets, Astron. Tsirkulyar, 1976, vol. 931, pp. 5–7.

    ADS  Google Scholar 

  25. Kiselev, N.N. and Chernova, G.P., Polarization of the radiation of comet West, 1975n, Sov. Astron., 1978, vol. 22, pp. 607–611.

    ADS  Google Scholar 

  26. Kiselev, N., Rosenbush, V., Muinonen, K., Kolokolova, L., Savushkin, A., and Karpov, N., New polarimetric data for the Galilean satellites: Europa observations and modeling, Planet. Sci. J., 2022, vol. 3, no. 6, p. 134. https://doi.org/10.3847/PSJ/ac6bef

    Article  Google Scholar 

  27. Li, A. and Greenberg, J.M., A unified model of interstellar dust, Astron. Astrophys., 1997, vol. 323, no. 2, pp. 566–584.

    ADS  Google Scholar 

  28. Lyot, B., Recherches sur la polarisation de la lumiere des planetes et de queldues substances terrestres, Ann. Obs. Meudon, 1929, vol. 8, pp. 1–161.

    Google Scholar 

  29. Lyot, B., Polarisation des petites planètes, Comptes Rendus de l’Académie des Sciences, 1934, vol. 199, p. 774.

    Google Scholar 

  30. McCoyd, G.C., Polarization properties of simple dielectric rough surface model, J. Opt. Soc. Am., 1967, vol. 57, no. 11, pp. 1345–1350.

    Article  ADS  Google Scholar 

  31. Mishchenko, M.I., Enhanced backscattering of polarized light from discrete random media: Calculations in exactly the backscattering direction, J. Opt. Soc. Am. A, 1992, vol. 9, no. 6, pp. 978–982. https://doi.org/10.1364/JOSAA.9.000978

    Article  ADS  Google Scholar 

  32. Mishchenko, M.I., On the nature of the polarization opposition effect exhibited by Saturn’s rings, Astrophys. J., 1993, vol. 411, pp. 351–361. https://doi.org/10.1086/172835

    Article  ADS  Google Scholar 

  33. Mishchenko, M.I., Diffuse and coherent backscattering by discrete random media. I. radar reflectivity, polarization ratios, and enhancement factors for a half-space of polydisperse, nonabsorbing and absorbing spherical particles, J. Quantum Spectrosc. Radiat. Transfer, 1996, vol. 56, no. 5, pp. 673–702. https://doi.org/10.1016/S0022-4073(96)00117-3

    Article  ADS  Google Scholar 

  34. Mishchenko, M.I., Travis, L.D., and Mackowski, D.W., Scattering of light by bispheres with touching and separated components, Appl. Opt., 1995, vol. 34, no. 21, pp. 4589–4599. https://doi.org/10.1364/AO.34.004589

    Article  ADS  Google Scholar 

  35. Mishchenko, M.I., Luck, J.M., and Nieuwenhuizen, T.M., Full angular profile of the coherent polarization opposition effect, J. Opt. Soc. Am. A, 2000, vol. 17, no. 5, pp. 888–891. https://doi.org/10.1364/JOSAA.17.000888

    Article  ADS  Google Scholar 

  36. Mishchenko, M.I., Dlugach, J.M., and Liu, L., Azimuthal asymmetry of the coherent backscattering cone: Theoretical results, Phys. Rev. A, 2009, vol. 80, no. 5, p. 053824. https://doi.org/10.1103/PhysRevA.80.053824

    Article  ADS  Google Scholar 

  37. Mishchenko, M.I., Rosenbush, V.K., Kiselev, N.N., Lupishko, D.F., Tishkovets, V.P., Kaydash, V.G., Belskaya, I.N., Efimov, Y.S., and Shakhovskoy, N.M., Polarimetric Remote Sensing of Solar System Objects, Kyiv: Akademperiodyka, 2010.

    Book  Google Scholar 

  38. Muinonen, K., Electromagnetic scattering by two interacting dipoles, Proc. 1989 URSI Electromagnetic Theory Symp., Stockholm, 1989, pp. 428–430.

  39. Muinonen, K., Light scattering by inhomogeneous media: Backward enhancement and reversal of linear polarization, Ph. D. Thesis. Report 3/1990, Helsinki: Observatory and Astrophysics Laboratory, Univ. Helsinki, 1990.

  40. Muinonen, K., Light scattering by Gaussian random particles, Earth, Moon, and Planets, 1996, vol. 72, pp. 339–342. https://doi.org/10.1007/BF00117539

    Article  ADS  Google Scholar 

  41. Muinonen, K.O., Sihvola, A.H., Lindell, I.V., and Lumme, K.A., Scattering by a small object close to an interface. II. Study of backscattering, J. Opt. Soc. Am. A, 1991, vol. 8, no. 3, pp. 477–482. https://doi.org/10.1364/JOSAA.8.000477

    Article  ADS  Google Scholar 

  42. Muñoz, O. and Hovenier, J.W., Laboratory measurements of single light scattering by ensembles of randomly oriented small irregular particles in air. A review, J. Quantum Spectrosc. Radiat. Transfer, 2011, vol. 112, no. 11, pp. 1646–1657. https://doi.org/10.1016/j.jqsrt.2011.02.005

    Article  ADS  Google Scholar 

  43. Muñoz, O., Moreno, F., Gómez-Martín, J.C., Vargas-Martín, F., Guirado, D., Ramos, J.L., Bustamante, I., Bertini, I., Frattin, E., Markannen, J., Tubiana, C., Fulle, M., Guttler, C., Sierks, H., Rotundi, A., Della Corte, V., Ivanovski, S., Zakharov, V.V., Bockelée-Morvan, D., Blum, J., Merouane, S., Levasseur-Regourd, A.C., Kolokolova, L., Jardiel, T., and Caballero, A.C., Experimental phase function and degree of linear polarization curves of millimeter-sized cosmic dust analogs, Astrophys. J., Suppl. Ser., 2020, vol. 247, no. 1, p. 19. https://doi.org/10.3847/1538-4365/ab6851

    Article  ADS  Google Scholar 

  44. Öhman, Y., A tentative explanation of the polarization in diffuse reflection, Stockholm Obs. Ann., 1955, vol. 18, pp. 1–10.

    Google Scholar 

  45. Ovcharenko, A.A. and Shkuratov, Yu.G., Weak-localization effect for light backscattered by surfaces with a complex structure, Opt. Spectrosc., 2000, vol. 88, no. 2, pp. 253–259. https://doi.org/10.1134/1.626788

    Article  ADS  Google Scholar 

  46. Ozrin, V.D., Exact solution for coherent backscattering of polarized light from a random medium of Rayleigh scatterers, Waves Random Media, 1992, vol. 2, no. 2, pp. 141–164. https://doi.org/10.1088/0959-7174/2/2/005

    Article  ADS  MathSciNet  MATH  Google Scholar 

  47. Petrov, D. and Kiselev, N., Computer simulation of position and maximum of linear polarization of asteroids, J. Quantum Spectrosc. Radiat. Transfer, 2018, vol. 204, pp. 88–93. https://doi.org/10.1016/j.jqsrt.2017.09.003

    Article  ADS  Google Scholar 

  48. Petrov, D.V. and Zhuzhulina, E.A., Polarization properties of quasi-fractal porous particles, J. Quantum Spectrosc. Radiat. Transfer, 2022, vol. 289, p. 108298. https://doi.org/10.1016/j.jqsrt.2022.108298

    Article  Google Scholar 

  49. Petrova, E.V., Tishkovets, V.P., and Jockers, K., Modeling of opposition effects with ensembles of clusters: Interplay of various scattering mechanisms, Icarus, 2007, vol. 188, no. 1, pp. 233–245. https://doi.org/10.1016/j.icarus.2006.11.011

    Article  ADS  Google Scholar 

  50. Petrova, E.V., Tishkovets, V.P., and Jockers, K., Interaction of particles in the near field and opposition effects in regolith-like surfaces, Sol. Syst. Res., 2009, vol. 43, no. 2, pp. 100–115. https://doi.org/10.1134/S0038094609020026

    Article  ADS  Google Scholar 

  51. Quirantes, A., Arroyo, F., and Quirantes-Ros, J., Multiple light scattering by spherical particle systems and its dependence on concentration: A T-matrix study, J. Colloid Interface Sci., 2001, vol. 240, no. 1, pp. 78–82. https://doi.org/10.1006/jcis.2001.7641

    Article  ADS  Google Scholar 

  52. Rode, O., Ivanov, A., Nazarov, M., Cimbalnikova, A., Jurek, K., and Hejl, V., Atlas of Photomicrographs of the Surface Structures of Lunar Regolith Particles, Prague: Academia, 1979.

    Google Scholar 

  53. Savornin, J., Étude de la diffraction éloignée, Ann. Phys., 1939, vol. 11, no. 11, pp. 129–255. https://doi.org/10.1051/anphys/193911110129

    Article  MATH  Google Scholar 

  54. Scott, A. and Duley, W.W., Ultraviolet and infrared refractive indices of amorphous silicates, Astrophys. J., Suppl. Ser., 1996, vol. 105, p. 401. https://doi.org/10.1086/192321

    Article  ADS  Google Scholar 

  55. Shkuratov, Yu.G., A model for negative polarization of light by cosmic bodies without atmospheres, Sov. Astron., 1982, vol. 26, pp. 493–496.

    ADS  Google Scholar 

  56. Shkuratov, Yu.G., On the nature of the opposition effect of brightness and negative polarization of light from solid cosmic surfaces, Astron. Tsirkulyar, 1985, vol. 1400, pp. 3–6.

    ADS  Google Scholar 

  57. Shkuratov, Yu.G., Diffraction mechanism for the formation of the opposition effect of the brightness of surfaces with a complex structure, Kinemat. Fiz. Nebesn. Tel, 1988a, vol. 4. no. 4, pp. 33–39.

    ADS  Google Scholar 

  58. Shkuratov, Yu.G., On the nature of the polarimetric inhomogeneity of the surface of the asteroid 4 Vesta, Astron. Vestn., 1988b, vol. 12, no. 2, pp. 152–158.

    ADS  Google Scholar 

  59. Shkuratov, Y.G., Interference model of negative polarization of light scattered by the solid surfaces of celestial bodies, Sol. Syst. Res., 1991, vol. 25, no. 2, p. 110.

    ADS  Google Scholar 

  60. Shkuratov, Y.G. and Melkumova, L.Y., Diffraction model of the negative polarization of light scattering by atmosphereless cosmic bodies, Abstracts of Lunar and Planet. Sci. Conf., 1991, vol. 22, p. 1243.

  61. Shkuratov, Yu.G., Opanasenko, N.V., and Melkumova, L.Ya., Interference amplification of backscattering and negative polarization of light reflected by surfaces with a complex structure, Preprint of the Inst. Radiophys. Electron., USSR Acad. Sci., Kharkov, 1989, no. 361.

  62. Shkuratov, Y.G., Kreslavskii, M.A., and Opanasenko, N.V., Analysis of a mechanism of negative polarization of light scattered by the surface of atmosphereless celestial bodies, Sol. Syst. Res., 1992, vol. 26, no. 1, p. 33.

    ADS  Google Scholar 

  63. Shkuratov, Y.G., Muinonen, K., Bowell, E., Lumme, K., Peltoniemi, J.I., Kreslavsky, M.A., Stankevich, D.G., Tishkovetz, V.P., Opanasenko, N.V., and Melkumova, L.Y., A critical review of theoretical models of negatively polarized light scattered by atmosphereless Solar System bodies, Earth, Moon and Planets, 1994, vol. 65, no. 3, pp. 201–246. https://doi.org/10.1007/BF00579535

    Article  ADS  Google Scholar 

  64. Shkuratov, Y., Ovcharenko, A., Zubko, E., Miloslavskaya, O., Muinonen, K., Piironen, J., Nelson, R., Smythe, W., Rosenbush, V., and Helfenstein, P., The opposition effect and negative polarization, Icarus, 2002, vol. 159, pp. 396–416. https://doi.org/10.1006/icar.2002.6923

    Article  ADS  Google Scholar 

  65. Shkuratov, Yu., Videen, G., Kreslavsky, M., Belskaya, I., Kaydash, V., Ovcharenko, A., Omelchenko, V., Opanasenko, N., and Zubko, E., Scattering properties of planetary regoliths near opposition, Photopolarimetry in Remote Sensing: NATO Science Series, Videen, G., Yatskiv, Y., and Mishchenko, M., Eds., London: Kluwer Acad. Publ., 2004, pp. 191–208. https://doi.org/10.1007/1-4020-2368-5_8

    Book  Google Scholar 

  66. Steigmann, G.A., A polarimetric model for a dust-covered planetary surface, Mon. Not. R. Astron. Soc., 1978, vol. 185, pp. 877–888. https://doi.org/10.1093/mnras/185.4.877

    Article  ADS  Google Scholar 

  67. Steigmann, G.A., Application of a polarimetric model to the surface microstructure of particles in the B-ring of Saturn, Mon. Not. R. Astron. Soc., 1984, vol. 209, pp. 359–371. https://doi.org/10.1093/mnras/209.2.359

    Article  ADS  Google Scholar 

  68. Steigmann, G.A., Optical polarimetry of sulphur and the surface microstructure of Io, Mon. Not. R. Astron. Soc., 1986, vol. 219, pp. 823–833. https://doi.org/10.1093/mnras/219.4.823

    Article  ADS  Google Scholar 

  69. Steigmann, G.A. and Dodsworth, M.B., Surface microstructure of the nucleus of comet P/Halley, Observatory, 1987, vol. 107, pp. 263–267.

    ADS  Google Scholar 

  70. Tishkovets, V.P., Backscattering of light by close-packed systems of particles, Opt. Spectrosc., 1998, vol. 85, no. 2, pp. 212–217.

    ADS  Google Scholar 

  71. Tishkovets, V., Litvinov, P., Petrova, E., Jockers, K., and Mishchenko, M., Backscattering effects for discrete random media: Theoretical results, Photopolarimetry in Remote Sensing, Dordrecht, Netherlands: Kluwer Acad., 2004, pp. 221–242. https://doi.org/10.1007/1-4020-2368-5_10

    Book  Google Scholar 

  72. Tishkovets, V.P., Light scattering by closely packed clusters: Shielding of particles by each other in the near field, J. Quantum Spectrosc. Radiat. Transfer, 2008, vol. 109, no. 16, pp. 2665–2672. https://doi.org/10.1016/j.jqsrt.2008.05.008

    Article  ADS  Google Scholar 

  73. Ufimtsev, P.Ya., Metod kraevykh voln v fizicheskoi teorii difraktsii (Edge Wave Method in the Physical Theory of Diffraction), Moscow: Sovetskoe radio, 1962.

  74. Veverka, J., Polarimetry of satellite surfaces, in Planetary Satellites, Burns, J.A., Ed., Tucson: Univ. Arizona Press, 1977, p. 210.

    Google Scholar 

  75. Warren, S.G. and Brandt, R.E., Optical constants of ice from the ultraviolet to the microwave: A revised compilation, J. Geophys. Res.: Atmos., 2008, vol. 113, p. D14220. https://doi.org/10.1029/2007JD009744

    Article  ADS  Google Scholar 

  76. Watson, K.M., Multiple scattering of electromagnetic waves in an underdense plasma, J. Math. Phys., 1969, vol. 10, pp. 688–702. https://doi.org/10.1063/1.1664895

    Article  ADS  Google Scholar 

  77. Weinberg, J.L., Polarization of the zodiacal light, in Planets, Stars, and Nebulae: Studied with Photopolarimetry, Gehrels, T., Ed., Tucson: Univ. Arizona Press, 1974. p. 781.

    Google Scholar 

  78. Wolff, M., Polarization of light reflected from rough planetary surface, Appl. Opt., 1975, vol. 14, no. 6, pp. 1395–1405. https://doi.org/10.1364/AO.14.001395

    Article  ADS  Google Scholar 

  79. Wolff, M., Theory and application of the polarization–albedo rules, Icarus, 1980, vol. 44, no. 3, pp. 780–792. https://doi.org/10.1016/0019-1035(80)90144-X

    Article  ADS  Google Scholar 

  80. Wolff, M., Computing diffuse reflection from particulate planetary surface with a new function, Appl. Opt., 1981, vol. 20, pp. 2493–2498. https://doi.org/10.1364/AO.20.002493

    Article  ADS  Google Scholar 

  81. Wolfsohn, G., Strenge theorie der interferenz und beugung, in Handbuch der Physik, Geiger, H. and Scheel, K., Eds., Berlin: Springer, 1928, pp. 263–316. https://doi.org/10.1007/978-3-642-90780-7_7

    Book  Google Scholar 

  82. Zhou, C., Coherent backscatter enhancement in single scattering, Opt. Express, 2018, vol. 26, no. 10, p. A508. https://doi.org/10.1364/OE.26.00A508

    Article  ADS  Google Scholar 

  83. Zhuzhulina, E., Petrov, D., Kiselev, N., Karpov, N., and Savushkin, A., Aperture polarimetry of selected comets in 2018–2020: Observations and computer simulation, J. Quantum Spectrosc. Radiat. Transfer, 2022, vol. 290, p. 108321. https://doi.org/10.1016/j.jqsrt.2022.108321

    Article  Google Scholar 

  84. Zubko, E., Petrov, D., Shkuratov, Y., and Videen, G., Discrete dipole approximation simulations of scattering by particles with hierarchical structure, Appl. Opt., 2005, vol. 44, no. 30, pp. 6479–6485. https://doi.org/10.1364/AO.44.006479

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. V. Petrov.

Additional information

Translated by E. Seifina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Petrov, D.V., Kiselev, N.N., Savushkin, A.A. et al. Negative Polarization of Celestial Bodies: Review and Computer Simulation. Sol Syst Res 57, 143–160 (2023). https://doi.org/10.1134/S0038094623020053

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0038094623020053

Keywords:

Navigation