Skip to main content
Log in

Boolean Valued Analysis of Banach Algebras

  • Published:
Siberian Mathematical Journal Aims and scope Submit manuscript

Abstract

We implement the Boolean valued analysis of Baer \( C^{\ast} \)-algebras and Jordan–Banach algebras. These algebras transform into \( AW^{\ast} \)- and \( JB \)-factors. Presentation of the factors as operator algebras leads to Kaplansky–Hilbert modules. We overview the basic properties of these objects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. As usual, \( \operatorname{ext}(K) \) is the set of extreme points of a convex set \( K \).

  2. Cp. [1, Theorem 5.2.6(10)].

  3. These are often called arrow cancelation rules; cp. [1, 3.3.12(6)].

  4. The phrase “a projection \( \pi \) contains a projection \( \rho \)” means that \( \rho\leq\pi \).

  5. Cp. [1, 2.5.7] and [12, 5.1].

  6. Cp. [14, Chapter 1].

  7. Cp. [15, p. 38].

  8. Cp. [1, 2.3.3].

  9. Cp. [13, p. 38].

  10. This is defined as \( [\lambda]\!:=\bigwedge\{b\in 𝔹:b\lambda=\lambda\} \) for all \( \lambda\in\Lambda \); cp. [1, 4.2.6].

  11. Cp. [4, vol. 1, p. 329].

  12. Cp. [20, Section 3].

  13. Cp. [14, p. 361].

  14. Recall that \( \mathfrak{P}(M) \) is a Boolean algebra in the commutative case.

References

  1. Kusraev A.G. and Kutateladze S.S., Boolean Valued Analysis, Springer, Dordrecht (2012) (Mathematics and Its Applications; vol. 494).

    MATH  Google Scholar 

  2. Kusraev A.G. and Kutateladze S.S., Boolean Valued Analysis: Selected Topics, SMI VSC RAS, Vladikavkaz (2014) (Trends in Science: The South of Russia. A Math. Monogr. 6).

    MATH  Google Scholar 

  3. Vladimirov D.A., Boolean Algebras in Analysis, Springer, Dordrecht (2010) (Mathematics and Its Applications; vol. 540).

    Google Scholar 

  4. Kadison R.V. and Ringrose J.R., Fundamentals of the Theory of Operator Algebras. Vols. 1 and 2, Amer. Math. Soc., Providence (1997).

    MATH  Google Scholar 

  5. Kadison R.V. and Ringrose J.R., Fundamentals of the Theory of Operator Algebras. Vols. 3 and 4, Birkhäuser, Boston (1991).

    Book  MATH  Google Scholar 

  6. Berberian S.K., Baer \( \ast \)-Rings, Springer, Berlin and Heidelberg (2014) (Grundlehren Math. Wiss.; vol. 195).

    Google Scholar 

  7. Kusraev A.G., Dominated Operators, Springer, Dordrecht (2010) (Mathematics and Its Applications; vol. 519).

    MATH  Google Scholar 

  8. Von Neumann J., Collected Works. Vol. III. Rings of Operators, Pergamon, Oxford etc. (1961).

    MATH  Google Scholar 

  9. Kaplansky I., Selected Papers and Other Writings, Springer, New York (2013) (Springer Collected Works in Mathematics).

    MATH  Google Scholar 

  10. Takeuti G., Two Applications of Logic to Mathematics, Princeton University, Tokyo and Princeton (1978).

    MATH  Google Scholar 

  11. Ozawa M., “From Boolean valued analysis to quantum set theory: Mathematical worldview of Gaisi Takeuti,” Mathematics MDPI, vol. 9 (2021) (Article 397, 10 pp.).

  12. Kutateladze S.S., “What is Boolean valued analysis?” Siberian Adv. Math., vol. 17, no. 2, 91–111 (2007).

    Article  MathSciNet  Google Scholar 

  13. Mashreghi J. and Ransford Th., “Gleason–Kahane–Żelazko theorems in function spaces,” Acta Sci. Math. (Szeged), vol. 84, no. 1, 227–238 (2018).

    Article  MathSciNet  MATH  Google Scholar 

  14. Sakai S., \( C^{*} \)-Algebras and \( W^{*} \)-Algebras, Springer, Heidelberg (1998) (Classics in Mathematics).

    Book  MATH  Google Scholar 

  15. Saitô K. and Wright J.D.M., Monotone Complete \( C^{*} \)-Algebras and Generic Dynamics, Springer, London (2015) (Springer Monographs in Mathematics).

    Book  MATH  Google Scholar 

  16. Hanche-Olsen H. and Størmer E., Jordan Operator Algebras, Pitman, Boston etc. (1984).

    MATH  Google Scholar 

  17. McCrimmonn K., A Taste of Jordan Algebras, Springer, New York (2010) (Universitext).

    Google Scholar 

  18. Jacobson N., Structure and Representations of Jordan Algebras, Amer. Math. Soc., Providence (1968) (Colloquium Publications; vol. 30).

    Book  MATH  Google Scholar 

  19. Shultz F.W., “On normed Jordan algebras which are Banach dual spaces,” J. Funct. Anal., vol. 31, no. 3, 360–376 (1979).

    Article  MathSciNet  MATH  Google Scholar 

  20. Okubo S., Introduction to Octovion and Other Non-Associative Algebras in Physics, Cambridge University, Cambridge (1995) (Montroll Memorial Lecture Series in Mathematical Physics).

    MATH  Google Scholar 

  21. Tang Y., “A new version of the Gleason–Kahane–Żelazko theorem in complete random normed algebras,” J. Inequal. Appl. (2012) (Article 86, 6 pp.).

  22. Ozawa M., “A classification of type I \( {AW}^{*} \)-algebras and Boolean valued analysis,” J. Math. Soc. Japan, vol. 36, no. 4, 589–608 (1984).

    MathSciNet  MATH  Google Scholar 

  23. Kaplansky I., “Modules over operator algebras,” Amer. J. Math., vol. 75, 839–858 (1953).

    Article  MathSciNet  MATH  Google Scholar 

  24. Kusraev A.G., “Functional realization of \( {AW}^{*} \)-algebras of type I,” Sib. Math. J., vol. 32, no. 3, 416–424 (1991).

    Article  MathSciNet  MATH  Google Scholar 

  25. Ozawa M., “A transfer principle from von Neumann algebras to \( AW^{\ast} \)-algebras,” J. London Math. Soc., vol. 32, no. 1, 141–148 (1985).

    Article  MathSciNet  MATH  Google Scholar 

  26. Topping D.M., “Jordan algebras of self-adjoint operators,” Mem. Amer. Math. Soc., vol. 53, 1–48 (1965).

    MathSciNet  MATH  Google Scholar 

  27. Størmer E., “Jordan algebras of type I,” Acta. Math., vol. 115, no. 3, 165–184 (1966).

    Article  MathSciNet  MATH  Google Scholar 

  28. Alfsen E.M., Shultz F.W., and Størmer E., “A Gelfand–Neumark theorem for Jordan algebras,” Adv. Math. (NY), vol. 28, no. 1, 11–56 (1978).

    Article  MathSciNet  MATH  Google Scholar 

  29. Kusraev A.G., “Boolean valued analysis and JB-algebras,” Sib. Math. J., vol. 35, no. 1, 114–122 (1994).

    Article  MathSciNet  MATH  Google Scholar 

  30. Kostecki R.P., \( W^{\ast} \)-Algebras and Noncommutative Integration [Preprint] (2014) (arXiv: 1307.4818).

    Google Scholar 

  31. Korol’ A.M. and Chilin V.I., “Measurable operators in a Boolean-valued model of set theory,” Dokl. Akad. Nauk UzSSR, vol. 3, 7–9 (1989) [Russian].

    MathSciNet  MATH  Google Scholar 

  32. Kadison R.V. and Liu Zh., “Derivations of Murray–von Neumann algebras,” Math. Scand., vol. 115, no. 2, 206–228 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  33. Ber A.F., Sukochev F.A., and Chilin V.I., “Derivations in commutative regular algebras,” Math. Notes, vol. 75, no. 3, 418–419 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  34. Kusraev A.G., “Automorphisms and derivations in extended complex \( f \)-algebras,” Sib. Math. J., vol. 47, no. 1, 97–107 (2006).

    MathSciNet  MATH  Google Scholar 

  35. Ber A.F., Kudaybergenov K.K., and Sukochev F.A., “Derivations on Murray–von Neumann algebras,” Russian Math. Surveys, vol. 74, no. 5, 950–952 (2019).

    Article  MathSciNet  MATH  Google Scholar 

  36. Ber A.F., Kudaybergenov K.K., and Sukochev F.A., “Derivations of Murray–von Neumann algebras,” J. Reine Angew. Math., vol. 791, no. 10, 283-301 (2022).

    MathSciNet  MATH  Google Scholar 

  37. Ayupov Sh.A., and Kudaybergenov K.K., “Derivations on the algebras of measurable operators,” Infin. Dimens. Anal. Quantum Probab. Relat. Top., vol. 13, no. 2, 305–337 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  38. Ayupov Sh.A., Kudaybergenov K.K., and Peralta A.M., “A survey on local and \( 2 \)-local derivations on \( C^{\ast} \)-algebras and von Neumann algebras,” in: Topics in Functional Analysis and Algebra, Amer. Math. Soc., Providence (2016), 73–126 (Contemp. Math.; vol. 672).

  39. Gutman A.E., Kusraev A.G., and Kutateladze S.S., “The Wickstead problem,” Sib. Electr. Math. Reports, vol. 5, 293–333 (2008).

    MathSciNet  MATH  Google Scholar 

  40. Ayupov Sh.A., Kudaybergenov K.K., and Karimov Kh., “Isomorphisms of commutative regular algebras,” Positivity, vol. 26 (2022) (Article 11, 15 pp.).

  41. Ayupov Sh.A., Kudaybergenov K.K., and Karimov Kh., “Isomorphism between the algebra of measurable functions and its subalgebra of approximately differentiable functions,” Vladikavkaz. Mat. Zh., vol. 25, no. 2, 24–36 (2023).

    MathSciNet  MATH  Google Scholar 

  42. Khalkhali M., Basic Noncommutative Geometry. 2nd ed., Euro. Math. Soc., Zürich (2013) (EMS Series of Lectures in Mathematics).

    Book  MATH  Google Scholar 

  43. Boyle L. and Farnsworth S, “Non-commutative geometry, non-associative geometry and the standard model of particle physics,” New J. Phys., vol. 16 (2014) (Article 123027, 6 pp.).

  44. Takeuti G., “Quantum set theory,” in: Current Issues in Quantum Logic, Plenum, New York (1981), 303–322.

Download references

Funding

The research was supported by the Ministry of Science and Higher Education of the Russian Federation (Agreement 075–02–2023–914) carried out in the framework of the State Task to the Sobolev Institute of Mathematics (Project FWNF–2022–0004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. S. Kutateladze.

Additional information

The article was submitted by the authors in English.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kusraev, A.G., Kutateladze, S.S. Boolean Valued Analysis of Banach Algebras. Sib Math J 64, 1001–1034 (2023). https://doi.org/10.1134/S0037446623040225

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0037446623040225

Keywords

UDC

Navigation