Skip to main content
Log in

A four-point criterion for the Möbius property of a homeomorphism of plane domains

  • Published:
Siberian Mathematical Journal Aims and scope Submit manuscript

Abstract

An ordered quadruple of pairwise distinct points T = {z 1, z 2, z 3, z 4} ⊂ C is called regular whenever z 2 and z 4 lie at the opposite sides of the line through z 1 and z 3. Consider Φ(T) = ∠z 1 z 2 z 3 + ∠z 1 z 4 z 3 (the angles are undirected) as some geometric characteristic of a regular tetrad. We prove the following theorem: For every fixed α ∈ (0, 2π) the Möbius property of a homeomorphism f: D → D* of domains in C is equivalent to the requirement that each regular tetrad T ⊂ D with Φ(T) = α whose image fT is also a regular tetrad satisfies Φ(fT) = α. In 1994 Haruki and Rassias established this criterion for the Möbius property only in the class of univalent analytic functions f(z).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ahlfors L. V., Möbius Transformations in Several Dimensions [Russian translation], Mir, Moscow (1986).

    Google Scholar 

  2. Carathéodory C., “The most general transformations of plane regions which transform circles into circles,” Bull. Amer. Math. Soc., 43, 537–579 (1937).

    Google Scholar 

  3. Höfer R., “A characterization of Möbius transformations,” Proc. Amer. Math. Soc., 128, No. 4, 1197–1201 (1999).

    Article  Google Scholar 

  4. Zelinskiĭ Yu. B., “On mappings invariant on subsets,” in: Approximation Theory and Related Problems of Analysis and Topology [in Russian], Inst. Mat. AN UkrainSSR, Kiev, 1987, pp. 25–35.

    Google Scholar 

  5. Beardon A. F., The Geometry of Discrete Groups, Springer-Verlag, New York, Heidelberg, and Berlin (1983).

    Book  MATH  Google Scholar 

  6. Benz W., “Characterizations of geometrical mappings under mild hypotheses: Über ein modernes Forschungsgebiet der Geometrie,” Hamb. Beitr. Wiss. Gesch., 15, 393–409 (1994).

    Google Scholar 

  7. Kuz’minykh A. V., “On unit bases for the Euclidean metric,” Siberian Math. J., 38, No. 4, 730–733 (1997).

    Article  MathSciNet  Google Scholar 

  8. Lester J. A., “Euclidean plane point-transformations preserving unit perimeter,” Arch. Math., 45, 561–564 (1985).

    Article  MathSciNet  MATH  Google Scholar 

  9. Rassias Th. M., “Some remarks on isometric mappings,” Facta Univ. Ser. Math. Inform., 2, 49–52 (1987).

    MathSciNet  MATH  Google Scholar 

  10. Khamsemanan N. and Connelly R., “Two-distance preserving functions,” Beitr. Algebra Geom., 43, No. 2, 557–564 (2002).

    MathSciNet  MATH  Google Scholar 

  11. Bogataya S. I., Bogatyĭ S. A., and Frolkina O. D., “Affinity of volume-preserving mappings,” Vestnik Moskov. Univ. Ser. I Mat. Mekh., No. 6, 10–14 (2001).

  12. Frolkina O. D., “Affinity of angle-preserving mappings,” Vestnik Moskov. Univ. Ser. I Mat. Mekh., No. 2, 60–63 (2002).

  13. Chubarev A. and Pinelis I., “Fundamental theorem of geometry without the 1-to-1 assumption,” Proc. Amer. Math. Soc., 127, 2735–2744 (1999).

    Article  MathSciNet  MATH  Google Scholar 

  14. Yang Sh. and Fang A., “A new characteristic of Möbius transformations in hyperbolic geometry,” J. Math. Anal. Appl., 319, 660–664 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  15. Li B. and Wang Y., “A new characterization for isometries by triangles,” New York J. Math., 15, 423–429 (2009).

    MathSciNet  MATH  Google Scholar 

  16. Haruki H. and Rassias Th., “A new invariant characteristic property of Möbius transformations from standpoint of conformal mapping,” J. Math. Anal. Appl., 181, 320–327 (1994).

    Article  MathSciNet  MATH  Google Scholar 

  17. Haruki H. and Rassias Th., “A new characteristic of Möbius transformations by use of Apollonius points of triangles,” J. Math. Anal. Appl., 197, 14–22 (1996).

    Article  MathSciNet  MATH  Google Scholar 

  18. Haruki H. and Rassias Th., “A new characteristic of Möbius transformations by use of Apollonius quadrilaterals,” Proc. Amer. Math. Soc., 126, 2857–2861 (1998).

    Article  MathSciNet  MATH  Google Scholar 

  19. Haruki H. and Rassias Th., “A new characteristic of Möbius transformations by use of Apollonius hexagons,” Proc. Amer. Math. Soc., 128, 2105–2109 (2000).

    Article  MathSciNet  MATH  Google Scholar 

  20. Bulut S. and Özgür N. Y., “A new characterization of Möbius transformations by use of Apollonius point of pentagons,” Turkish J. Math., 28, 299–305 (2004).

    MathSciNet  MATH  Google Scholar 

  21. Beardon A. F. and Minda D., “Sphere-preserving maps in inversive geometry,” Proc. Amer. Math. Soc., 130, No. 4, 987–998 (2001).

    Article  MathSciNet  Google Scholar 

  22. Kobayashi O., “Apollonius points and anharmonic ratios,” Tokyo Math. J., 30, No. 1, 117–119 (2007).

    Article  MATH  Google Scholar 

  23. Aseev V. and Kergilova T., “On transformations that preserve fixed anharmonic ratio,” Tokyo Math. J., 33, No. 2, 365–371 (2010).

    Article  MATH  Google Scholar 

  24. Kuratowski K., Topology. Vol. 1 [Russian translation], Mir, Moscow (1966).

    Google Scholar 

  25. Moreno J. P., “An invitation to plane topology,” Austral. Math. Soc. Gaz., 29, No. 3, 149–154 (2002).

    MathSciNet  MATH  Google Scholar 

  26. Burago Yu. D. and Zalgaller V. A., “Sufficient conditions for convexity,” in: Problems of Global Geometry [in Russian], Nauka, Leningrad, 1974, pp. 3–52 (Zap. Nauchn. Sem. LOMI; Vol. 45).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Aseev.

Additional information

Original Russian Text Copyright © 2011 Aseev V. V. and Kergilova T. A.

The authors were supported by the Russian Foundation for Basic Research (Grants 09-01-98001-r-sibir-a and 11-01-90704-mob-st).

__________

Translated from Sibirskiĭ Matematicheskiĭ Zhurnal, Vol. 52, No. 5, pp. 977–992, September–October, 2011.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aseev, V.V., Kergilova, T.A. A four-point criterion for the Möbius property of a homeomorphism of plane domains. Sib Math J 52, 776–787 (2011). https://doi.org/10.1134/S0037446611050028

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0037446611050028

Keywords

Navigation