Skip to main content
Log in

Structure and Tribological Characteristics of TiAlN Coatings with In, Sn, and Pb Additions

  • ADVANCED MATERIALS AND TECHNOLOGIES
  • Published:
Russian Metallurgy (Metally) Aims and scope

Abstract

The structure and tribological characteristics of 1-μm-thick TiAlN-based coatings with soft metal additions (In, Sn, Pb), which are prepared by reactive magnetron sputtering of separated cathodes, are studied. The coatings are found to have a columnar nanocrystalline composite structure. The AlxTi1 – xN, In(Sn) solid solution, Pb, and PbO phases are found in the coatings. The microhardness of the coatings is 280–382 HV. Under reciprocating motion conditions at room temperature, the minimum friction coefficient (μ ≈ 0.20) and high stability of tribological characteristics are achieved for a TiAlN–InSn coating with the atomic ratio Al/(Al + Ti) = 0.53. As the test temperature increases to 100 or 200°C, the wear of the coating and the transfer of the counterbody material decrease; which is related to the presence of the AlxTi1–xN phase with a wurtzite structure characterized by a low shear strength.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Abbreviations

Q Ar and Q N :

the argon and nitrogen gas flow, respectively

I Ti, I Cu, I In–Sn, I Al :

discharge current of corresponding magnetrons

P Ar :

argon pressure

n :

number of test cycles

μ:

friction coefficient

F :

power source frequency

EMPA:

electron microprobe analysis

SEM:

scanning electron microscopy

REFERENCES

  1. J.-H. Ouyang, Y.-F. Li, Y.-Z. Zhang, Y.-M. Wang, and Y.‑J. Wang, “High-temperature solid lubricants and self-lubricating composites: A critical review,” Lubricants 10, 177 (2022).

    Article  CAS  Google Scholar 

  2. B. Lenz, S. Hoja, M. Sommer, H. Hasselbruch, A. Mehner, and M. Steinbacher “Potential of nitrided and PVD–MoS2: Ti‑coated duplex system for dry-running friction contacts,” Lubricants 10, 229 (2022).

    Article  CAS  Google Scholar 

  3. L. N. Lesnevskii, V. N. Tyurin, and A. M. Ushakov, “Method for formation of composite solid-lubricating coatings on working surfaces of frictional units,” RF Patent 2416675, 2011.

  4. A. N. Zayatzev, J. I. Shoucheng, and Y. P. Alexandrova, “An experimental study of tribological properties of threaded joints Inconel 718–Grade 660 with a solid lubricant based on MoS2, in Proceedings of the 9th International Conference on Industrial Engineering—ICIE (Sochi, 2023), p. 489.

  5. K. Von Fieandt, E.-M. Paschalidou, A. Srinath, P. Soucek, L. Riekehr, L. Nyholm, and E. Lewin, “Multi-component (Al, Cr, Nb, Y, Zr)N thin films by reactive magnetron sputter deposition for increased hardness and corrosion resistance,” Thin Solid Films 693, 137685 (2020).

    Article  CAS  Google Scholar 

  6. S. Ya. Betsofen, V. V. Plikunov, L. M. Petrov, and I. O. Bannykh “Study of the phase composition and structure of multicomponent vacuum ion-plasma coatings (Ti,Nb,Me)N and (Zr,Nb)N(C), depending on their chemical composition and technology parameters,” Aviation Industry 4, 9–15 (2007).

    Google Scholar 

  7. P. Patel, A. Roy, N. Sharifi, P. Stoyanov, R. R. Chromik, and C. Moreau, “Tribological performance of high-entropy coatings (HECs): A review,” Materials 15, 3699 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. M. J. R. Haché, C. Cheng, and Y. Zou, “Nanostructured high-entropy materials,” J. Mater. Res. 35 (8), 1051–1075 (2020).

    Article  Google Scholar 

  9. A. Lozovan, S. Savushkina, M. Lyakhovetsky, I. Nikolaev, S. Betsofen, and E. Kubatina, “Investigation of structural and tribological characteristics of TiN composite ceramic coatings with Pb additives,” Coatings 13, 1463 (2023).

    Article  CAS  Google Scholar 

  10. H. S. Myunga, H. M. Lee, L. R. Shaginyan, and J. G. Han, “Microstructure and mechanical properties of Cu doped TiN superhard nanocomposite coatings,” Surf. Coat. Technol. 163164, 591–596 (2023).

  11. K. Kutschej, C. Mitterer, C. P. Mulligan, and D. Gall, “High-temperature tribological behavior of CrN–Ag self-lubricating coatings,” Adv. Eng. Mater. 8 (11), 1125–1129 (2006).

    Article  CAS  Google Scholar 

  12. A. A. Lozovan, S. V. Savushkina, M. A. Lyakhovetskii, E. P. Kubatina, and I. A. Nikolaev, “Structure and tribological characteristics of TiN–Cu coating with In and Sn additions,” Deform. Razrushenie Mater., No. 9, 11–20 (2023).

  13. C. Peng, Y. Zhao, S. Jin, J. Wang, R. Liu, H. Liu, W. Shi, S. K. Kolawole, L. Ren, B. Yu, K. Yang, “Antibacterial TiCu/TiCuN multilayer films with good corrosion resistance deposited by axial magnetic field-enhanced arc ion plating,” ACS Appl. Mater. Interfaces 11, 125–136 (2019).

    Article  CAS  PubMed  Google Scholar 

  14. C. B. Wei, X. B. Tian, Y. Yang, S. Q. Yang, K. Y. Fu, and P. K. Chu, “Microstructure and tribological properties of Cu–Zn/TiN multilayers fabricated by dual magnetron sputtering,” Surf. Coat. Technol. 202, 189–193 (2007).

    Article  CAS  Google Scholar 

  15. A. K. Mukhopadhyay, A. Roy, G. Bhattacharjee, S. C. Das, A. Majumdar, H. Wulff, and R. Hippler, “Surface stoichiometry and depth profile of Tix CuyNz thin films deposited by magnetron sputtering,” Materials 14, 3191 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. I. V. Blinkov, A. O. Volkhonskii, A. I. Laptev, T. A. Sviridova, N. Yu. Tabachkova, D. S. Belov, and A. V. Ershova, “Ceramic–metallic (TiN–Cu) nanostructured ion-plasma vacuum arc coatings for cutting hardmetal tools,” Izv. Vyshs. Uchebn. Zaved., Poroshk. Metall. Funkt. Pokrytiya, No. 2, 55–59 (2013).

    Google Scholar 

  17. A. A. Lozovan, S. Ya. Betsofen, S. V. Savushkina, M. A. Lyakhovetskii, L. N. Lesnevskii, I. A. Nikolaev, Yu. S. Pavlov, E. P. Kubatina, and L. E. Agureev, “Structure and wear mechanism of solid-lubricating TiN–Pb coatings,” Poverkhnost. Rentgenovskie, Sinkhrotronnyi i Neutronnye Issledovaniya, No. 8, 64–73 (2023).

    Google Scholar 

  18. A. A. Lozovan, S. Ya. Betsofen, S. V. Savushkina, M. A. Lyakhovetskii, L. N. Lesnevskii, I. A. Nikolaev, and E. P. Kubatina, “Influence of sputtering geometry and conditions on the structure and properties of the TiN–Pb solid lubricating coatings fabricated by magnetron co-sputtering of two separate targets,” Russ. Metall. (Metally) 2022 (11), 1441–1448 (2022).

  19. C. G. Guleryuz, J. E. Krzanowski, S. C. Veldhuis, and G. S. Fox-Rabinovich, “Machining performance of TiN coatings incorporating indium as a solid lubricant as placeholders for microreservoir formation,” Surf. Coat. Technol. 203, 3370–3376 (2009).

    Article  CAS  Google Scholar 

  20. D. S. Stone, J. Migas, A. Martini, T. Smith, C. Muratore, A. A. Voevodin, and S. M. Aouadi, “Adaptive NbN/Ag coatings for high temperature tribological applications,” Surf. Coat. Technol. 206 (19–20), 4316–4321 (2012).

  21. P. Mayrhofer, C. Mitterer, L. Hultman, and H. Clemens, “Microstructural design of hard coatings,” Progr. Mater. Sci. 51, 1032–1114 (2006).

    Article  CAS  Google Scholar 

  22. K. Kutschej, P. H. Mayrhofer, M. Kathrein, P. Polcik, R. Tessadri, and C. Mitterer, “Structure, mechanical and tribological properties of sputtered Ti1–xAlxN coatings with 0.5 ≤ x ≤ 0.75,” Surf. Coat. Technol. 200, 2358–2365 (2005).

    Article  CAS  Google Scholar 

  23. R. Rachbauer, D. Holec, and P. H. Mayrhofer, “Increased thermal stability of Ti–Al–N thin films by Ta alloying,” Surf. Coat. Technol. 211, 98–103 (2012).

    Article  CAS  Google Scholar 

  24. M. Zhou, Y. Makino, M. Noose, and K. Nogi, “Phase transition and properties of Ti–Al–N thin films prepared by r.f.-plasma assisted magnetron sputtering,” Thin Solid Films 339, 203–208 (1999).

    Article  CAS  Google Scholar 

  25. L. Aihua, J. Deng, C. Haibing, C. Yangyang, and Z. Jun, “Friction and wear properties of TiN, TiAlN, AlTiN, and CrAlN PVD nitride coatings,” Int. J. Refract. Met. Hard Mater. 31, 82–88 (2012).

    Article  Google Scholar 

  26. B. Y. Man, L. Guzman, A. Miotello, and M. Adami, “Microstructure, oxidation and H2-permeation resistance of TiAlN films deposited by dc magnetron sputtering technique,” Surf. Coat. Technol. 180181, 9–14 (2004).

Download references

Funding

The study was supported by the Russian Science Foundation, project no. 22-19-00754.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Savushkina.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by N. Kolchugina

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

AI tools may have been used in the translation or editing of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lozovan, A.A., Savushkina, S.V., Betsofen, S.Y. et al. Structure and Tribological Characteristics of TiAlN Coatings with In, Sn, and Pb Additions. Russ. Metall. 2024, 1105–1112 (2024). https://doi.org/10.1134/S0036029524702082

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036029524702082

Keywords: