Skip to main content
Log in

Preparation of Titanium Dioxide/Graphitic Carbon Nitride Hybrid and Its Catalytic Effect on Ammonium Perchlorate Decomposition

  • PHYSICAL CHEMISTRY OF NANOCLUSTERS AND NANOMATERIALS
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

Novel titanium dioxide/graphitic carbon nitride (TiO2/g-C3N4) hybrid was prepared by a facile sol-reflux method. Then, the as-prepared TiO2/g-C3N4 hybrid was characterized by FESEM, XRD, FT-IR, XPS, and BET analysis. The results show that TiO2 is attached to the g-C3N4 thin pieces in the form of anatase. A mesoporous structure, which has a large specific surface area and is conducive to catalytic adsorption, is formed. Simultaneously, chemical bonds may be formed between the oxides and g-C3N4. Furthermore, in order to analyze its catalytic effect on the decomposition of ammonium perchlorate (AP), Differential Scanning Calorimetry (DSC) technique has been employed. The decomposition temperature of AP dropped by 26°C when 2 wt % TiO2/g-C3N4 hybrid was added in, and the activation energy (Ea) by 44%. Based on the experimental data, a possible catalytic reaction mechanism of TiO2/g-C3N4 hybrid has been proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. N. M. Mahmoodi, P. Rezaei, C. Ghotbei, and M. Kazemeini, Fibers Polym. 17, 1842 (2016).

    Article  CAS  Google Scholar 

  2. P. Feng, X. Fu, Y. Hao, and H. Wang, New Carbon Mater. 22, 213 (2007).

    Article  Google Scholar 

  3. Q. Liao, J. Sun, and L. Gao, Colloids Surf., A 345, 95 (2009).

    Article  CAS  Google Scholar 

  4. Q. Ling, L. Y. Chen, A. J. Wang, et al., Fullerenes Nanotubes Carbon Nanostruct. 25, 23 (2017).

    Article  CAS  Google Scholar 

  5. J. Huang, N. Zhu, T. Yang, et al., Biosens. Bioelectron. 72, 332 (2015).

    Article  PubMed  CAS  Google Scholar 

  6. Y. Chen, H. Yu, L. Yi, et al., Powder Technol. 325, 568 (2018).

    Article  CAS  Google Scholar 

  7. C. Tian, Mater. Res. Bull. 103, 83 (2018).

    Article  CAS  Google Scholar 

  8. Y. Fang, X. Lu, and W. Chen, Gen. Chem. 3, 125 (2017).

    Article  Google Scholar 

  9. J. Schneider, M. Matsuoka, M. Takeuchi, et al., Chem. Rev. 114, 9919 (2014).

    Article  PubMed  CAS  Google Scholar 

  10. V. Etacheri, C. di Valentin, J. Schneider, et al., J. Photochem. Photobiol., C 25, 1 (2015).

  11. A. J. Frank, N. Kopidakis, and J. van de Lagemaat, Coord. Chem. Rev. 248, 1165 (2004).

    Article  CAS  Google Scholar 

  12. B. Bhanvase, T. Shende, and S. Sonawane, Environ. Technol. Rev. 6, 1 (2017).

    Article  CAS  Google Scholar 

  13. E. Petersen, J. Small, M. Stephens, et al., US Patent No. 8066834 (2011).

  14. D. L. Reid, A. E. Russo, R. V. Carro, et al., Nano Lett. 7, 2157 (2007).

    Article  CAS  Google Scholar 

  15. N. Li, Z. Geng, M. Cao, et al., Carbon 54, 124 (2013).

    Article  CAS  Google Scholar 

  16. A. Dey, V. Nangare, P. V. More, et al., RSC Adv. 5, 63777 (2015).

    Article  CAS  Google Scholar 

  17. S. H. Meng, J. F. Liu, X. T. Kong, and S. G. Du, Trans. Met. Chem. 45, 545 (2020).

    Article  CAS  Google Scholar 

  18. R. C. Dante, P. Martín-Ramos, L. M. Navas-Gracia, et al., J. Macromol. Sci., B 52, 623 (2013).

  19. L. Tan, J. Xu, S. Li, et al., Materials 10, 484 (2017).

    Article  PubMed Central  Google Scholar 

  20. Z. Zhao, Y. Sun, and F. Dong, Nanoscale 7, 15 (2015).

    Article  PubMed  CAS  Google Scholar 

  21. F. He, G. Chen, J. Miao, et al., ACS Energy Lett. 1, 969 (2016).

    Article  CAS  Google Scholar 

  22. K. Sridharan, E. Jang, and T. J. Park, Appl. Catal., B 142, 718 (2013).

    Article  Google Scholar 

  23. M. R. Gholipour, F. Béland, and T. O. Do, Int. J. Chem. React. Eng. 14, 851 (2016).

    Article  CAS  Google Scholar 

  24. Q. Li, Y. He, and R. Peng, RSC Adv. 5, 24507 (2015).

    Article  CAS  Google Scholar 

  25. Q. Li, Y. He, and R. Peng, Eur. J. Inorg. Chem. 2015, 4062 (2015).

    Article  CAS  Google Scholar 

  26. W. Zhou, F. Sun, K. Pan, et al., Adv. Funct. Mater. 21, 1922 (2011).

    Article  CAS  Google Scholar 

  27. J. Hong, X. Xia, Y. Wang, and R. Xu, J. Mater. Chem. 22, 15006 (2012).

    Article  CAS  Google Scholar 

  28. Y. Li, J. Zhang, Q. Wang, et al., J. Phys. Chem. B 114, 9429 (2010).

    Article  PubMed  CAS  Google Scholar 

  29. I. Balchev, N. Minkovski, K. Dimitrov, et al., J. Phys.: Conf. Ser. 682, 012033 (2016).

  30. P. Babu, S. Mohanty, B. Naik, and K. Parida, ACS Appl. Energy Mater. 1, 5936 (2018).

    Google Scholar 

  31. R. Ren, Z. Wen, S. Cui, et al., Sci. Rep. 5, 10714 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. J. Ma, X. Tan, T. Yu, and X. Li, Int. J. Hydrogen Energy 41, 3877 (2016).

    Article  CAS  Google Scholar 

  33. G. Zhang, J. Zhang, M. Zhang, and X. Wang, J. Mater. Chem. 22, 8083 (2012).

    Article  CAS  Google Scholar 

  34. F. Dong, Z. Zhao, T. Xiong, et al., ACS Appl. Mater. Interface 5, 11392 (2013).

    Article  CAS  Google Scholar 

  35. S. Vyazovkin and C. A. Wight, Chem. Mater. 11, 3386 (1999).

    Article  CAS  Google Scholar 

  36. G. Li, X. Liu, and W. Bai, Mater. Res. Express 5, 035036 (2018).

  37. P. W. Jacobs and A. Russell-Jones, J. Phys. Chem. 72, 202 (1968).

    Article  CAS  Google Scholar 

  38. A. A. Vargeese and K. Muralidharan, Mater. Chem. Phys. 139, 537 (2013).

    Article  CAS  Google Scholar 

  39. V. Boldyrev, Thermochim. Acta 443, 1 (2006).

    Article  CAS  Google Scholar 

  40. J. G. Amores, V. S. Escribano, G. Ramis, and G. Busca, Appl. Catal., B 13, 45 (1997).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors thank the School of Mechanical Engineering of Tsinghua University for their assistance in the XPS characterization. Meanwhile, the technology was supported by the School of Materials Science and Engineering of Tsinghua University for performing FESEM and BET analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shenghao Meng.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meng, S., Mi, W., Liu, J. et al. Preparation of Titanium Dioxide/Graphitic Carbon Nitride Hybrid and Its Catalytic Effect on Ammonium Perchlorate Decomposition. Russ. J. Phys. Chem. 96, 2497–2504 (2022). https://doi.org/10.1134/S0036024422110280

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024422110280

Keywords:

Navigation