Skip to main content
Log in

Effect of Intermolecular Interactions in a Water/AOT/Isopropyl Myristate System on the Release of Biologically Active Substances

  • PHYSICAL CHEMISTRY OF SURFACE PHENOMENA
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

New biodegradable water/sodium bis(2-ethylhexyl) sulfosuccinate (AOT)/isopropyl myristate (IPM) microemulsion systems for the delivery of medicinal and physiologically active substances are synthesized. The optimum concentrations of components that ensure solubilization of the largest amount of water-soluble substances are selected. The diffusion of model substances (L-lysine, L-serine, glycine, β-alanine) across a membrane is studied. It is found that the rate and pattern of release from the microemulsion vary strongly, depending on the terminal functional groups of amino acids. The effect the hydrophobicity and size of the introduced compounds have on the interaction with components of the transport system is determined using H1 NMR, self-diffusion NMR, the polarized luminescence of laurdan and fluorescein probes, and dynamic light scattering. It is shown that short-chain and polar amino acids are released much more quickly than charged amino acids. The results allow determination of the delivery characteristics of more complex counterparts (e.g., medicinal substances and protein molecules).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. J. Ma, X. Song, J. Luo, T. Zhao, et al., Langmuir. 35, 13636 (2019).

    Article  CAS  Google Scholar 

  2. M. Ohadi, A. Shahravan, N. Dehghannoudeh, et al., Drug Des. Devel. Ther. 14, 541 (2020).

    Article  CAS  Google Scholar 

  3. F. Gre, G. Ragno, R. Muzzalupo, et al., Pharmaceutics 12, 423 (2020).

    Article  Google Scholar 

  4. N. U. Okur, E. S. Cxag, and P. I. Siafaka, J. Ocul. Pharmacol. Ther. 36 (6), 1 (2020).

    Article  Google Scholar 

  5. N. O. Shaparenko, D. I. Beketova, M. G. Demidova, and A. I. Bulavchenko, Russ. J. Phys. Chem. A 92, 948 (2018).

    Article  CAS  Google Scholar 

  6. A. Rahdar, P. Taboada, M. R. Hajinezhad, et al., J. Mol. Liq. 277, 624 (2019).

    Article  CAS  Google Scholar 

  7. M. A. Saleem, M. F. Nazar, M. Y. Siddique, A. M. Khan, et al., J. Mol. Liq. 292, 111388 (2019).

    Article  CAS  Google Scholar 

  8. L. Anil and K. Kannan, J. Pharm. Sci. Res. 10, 16 (2018).

    CAS  Google Scholar 

  9. A. Kumar, S. K. Kansal, and A. O. Ibhadonc, Chem. Phys. Lipids 215, 11 (2018).

    Article  CAS  Google Scholar 

  10. Y. Poh, S. Ng, and K. Ho, J. Mol. Liq. 273, 339 (2019).

    Article  CAS  Google Scholar 

  11. N. B. Pajic, I. Nikolic, E. Mitsou, et al., J. Mol. Liq. 272, 746 (2018).

    Article  Google Scholar 

  12. R. M. Hathout and T. J. Woodman, J. Control Release 161, 62 (2012).

    Article  CAS  Google Scholar 

  13. F. F. Lv N. Li, Q. Zheng, et al., Eur. J. Pharm. Biopharm. 62, 288 (2006).

    Article  CAS  Google Scholar 

  14. T. Naz, S. Nazir, M. A. Rashid, et al., Pharm. Chem. J. 53, 1047 (2020).

    Article  CAS  Google Scholar 

  15. R. M. Hathout, T. J. Woodman, S. Mansour, et al., Eur. J. Pharm. Sci. 40, 188 (2010).

    Article  CAS  Google Scholar 

  16. L. Piñeiro, M. Novo, and W. Al-Soufi, Adv. Colloid Interface Sci. 215, 1 (2015).

    Article  Google Scholar 

  17. P. Chong, Biochemistry 27, 399 (1988).

    Article  CAS  Google Scholar 

  18. P. Chong, High Press Res. 5, 761 (1990).

    Article  Google Scholar 

  19. M. Amaro, F. Reina, and M. Hof, et al., J. Phys. D: Appl. Phys. 50, 134004 (2017).

    Article  Google Scholar 

  20. E. A. Lissi, E. B. Abuin, M. A. Rubio, and A. Cerón, Langmuir 16, 178 (2000).

    Article  CAS  Google Scholar 

  21. A. Amiri-Rigi and S. Abbasi, Food Chem. 197, 1002 (2016).

    Article  CAS  Google Scholar 

  22. G. B. Dutt, J. Phys. Chem. B 112, 7220 (2008).

    Article  CAS  Google Scholar 

  23. N. G. Arutyunyan, L. R. Arutyunyan, V. V. Grigoryan, and R. S. Arutyunyan, Colloid. J. 70, 666 (2008).

    Article  CAS  Google Scholar 

  24. A. Dogrul, A. Arslan, and F. Tirnaksiz, J. Microencapsul. 31, 448 (2014).

    Article  CAS  Google Scholar 

  25. A. S. Ivanov, Biomed. Khim. 57, 31 (2011).

    Article  CAS  Google Scholar 

  26. C. Salamanca, A. Barrera-Ocampo, J. Lasso, N. Camacho, et al., Pharmaceutics 10, 148 (2018).

    Article  CAS  Google Scholar 

  27. B. Lindman and U. Oisson, Ber. Bunsen-Ges. Phys. Chem. 100, 344 (1996).

    Article  CAS  Google Scholar 

  28. H. Liu, Y. Wang, Y. Lang, et al., J. Pharm. Sci. 98, 1167 (2009).

    Article  CAS  Google Scholar 

  29. M. Fanun, J. Mol. Liq. 133, 22 (2007).

    Article  CAS  Google Scholar 

  30. M. Fanun, J. Mol. Liq. 135, 5 (2007).

    Article  CAS  Google Scholar 

  31. V. Cojocaru, A. E. Ranetti, L. G. Hinescu, et al., Farmacia 63, 656 (2015).

    CAS  Google Scholar 

  32. S. K. Mehta, G. Kaur, and K. K. Bhasin, Pharm. Res. 25, 227 (2008).

    Article  CAS  Google Scholar 

  33. N. V. Sautina and Y. G. Galyametdinov, Russ. J. Phys. Chem. A 93, 860 (2019).

    Article  CAS  Google Scholar 

  34. N. V. Sautina, A. I. Rybakova, and Y. G. Galyametdinov, Liq. Cryst. Appl. 19, 26 (2019).

    Article  CAS  Google Scholar 

  35. N. V. Sautina, A. I. Rybakova, A. T. Gubaidullin, and Y. G. Galyametdinov, Liq. Cryst. Appl. 20 (2), 91 (2020).

    Article  CAS  Google Scholar 

  36. M. Kreilgaard, E. J. Pedersen, and J. W. Jaroszewski, J. Control Release 69, 421 (2000).

    Article  CAS  Google Scholar 

  37. D. A. Binks, N. Spencer, J. Wilkie, and M. M. Britton, J. Phys. Chem. B 114, 12558 (2010).

    Article  CAS  Google Scholar 

  38. F. M. Harris, K. B. Best, and J. D. Bell, Biochim. Biophys. Acta 1565, 123 (2002).

    Article  CAS  Google Scholar 

  39. O. I. Volkova, A. A. Kuleshova, B. N. Korvatovskii, and A. M. Saletsky, Opt. Spectrosc. 128, 1975 (2020).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The study was carried out using the equipment of the Center for Collective Use “Nanomaterials and Nanotechnology” of the Kazan National Research Technological University.

Funding

This work was supported by the Russian Foundation for Basic Research, project no. 19-03-00187_A. V.V. Klochkov and D.S. Blokhin are grateful for the subsidy allocated to Kazan Federal University as part of State Task no. 0671-2020-0051 for conducting NMR experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. V. Sautina.

Additional information

Translated by M. Timoshinina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sautina, N.V., Rybakova, A.I., Blokhin, D.S. et al. Effect of Intermolecular Interactions in a Water/AOT/Isopropyl Myristate System on the Release of Biologically Active Substances. Russ. J. Phys. Chem. 95, 2325–2331 (2021). https://doi.org/10.1134/S0036024421110200

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024421110200

Keywords:

Navigation