Skip to main content
Log in

High Temperature Study of Oxide Systems: Thermal Analysis and Knudsen Effusion Mass Spectrometry

  • XVI INTERNATIONAL CONFERENCE ON THERMAL ANALYSIS AND CALORIMETRY IN RUSSIA
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

Advantages and comparison of thermal analysis (TA) and Knudsen effusion mass spectrometry (KEMS) were discussed for the investigation of high temperature behavior of oxide systems such as ceramics and glass-forming melts. This brief overview proposes filling the gap by considering various approaches of interaction between the TA and KEMS data. The reliability of experimental data found using both methods is critically analyzed for thermodynamic values of the lanthanoid hafnates obtained by DSC and KEMS and mass losses of the samples in the Bi2O3–P2O5–SiO2 system found by thermogravimetry and KEMS. Recent achievements in experimental installations for these methods were also noted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. T. Ozawa, Thermochim. Acta 355, 35 (2000). https://doi.org/10.1016/S0040-6031(00)00435-4

    Article  CAS  Google Scholar 

  2. F. Rouquerol, J. Rouquerol, and P. Llewellyn, in Developments in Clay Science (Elsevier, Amsterdam, 2013), Vol. 5, Chap. 2.12, p. 361. https://doi.org/10.1016/B978-0-08-098259-5.00014-7

    Book  Google Scholar 

  3. J. Šesták, P. Holba, and K. S. Gavrichev, J. Therm. Anal. Calorim. 119, 779 (2015). https://doi.org/10.1007/s10973-014-4151-2

    Article  CAS  Google Scholar 

  4. P. Šulcová, J. Šesták, A. Menyhárd, and G. Liptay, J. Therm. Anal. Calorim. 120, 239 (2015). https://doi.org/10.1007/s10973-015-4550-z

    Article  CAS  Google Scholar 

  5. K. S. Gavrichev, Russ. J. Inorg. Chem. 65, 695 (2020). https://doi.org/10.1134/S0036023620050095

    Article  CAS  Google Scholar 

  6. A. Navrotsky, J. Am. Ceram. Soc. 97, 3349 (2014). https://doi.org/10.1111/jace.13278

    Article  CAS  Google Scholar 

  7. K. S. Gavrichev, Inorg. Mater. 39 (Suppl. 2), S89 (2003). https://doi.org/10.1023/B:INMA.0000008888.25890.51

    Article  CAS  Google Scholar 

  8. V. B. Lazarev, K. S. Gavrichev, and J. H. Greenberg, Pure Appl. Chem. 63, 1341 (1991). https://doi.org/10.1351/pac199163101341

    Article  CAS  Google Scholar 

  9. B. A. Rusanov, V. E. Sidorov, P. Svec, P. Svec, and D. Janickovic, Russ. J. Inorg. Chem. 65, 663 (2020). https://doi.org/10.1134/S0036023620050198

    Article  CAS  Google Scholar 

  10. M. A. Ryumin, Z. V. Dobrokhotova, A. L. Emelina, M. A. Bukov, N. V. Gogoleva, K. S. Gavrichev, E. N. Zorina-Tikhonova, L. I. Demina, M. A. Kiskin, A. A. Sidorov, I. L. Eremenko, and V. M. Novotortsev, Polyhedron 87, 28 (2015). https://doi.org/10.1016/j.poly.2014.10.031

    Article  CAS  Google Scholar 

  11. C. Schick, Anal. Bioanal. Chem. 395, 1589 (2009). https://doi.org/10.1007/s00216-009-3169-y

    Article  CAS  PubMed  Google Scholar 

  12. E. Gómez, N. Calvar, Á. Domínguez, and E. A. Macedo, Fluid Phase Equilib. 470, 51 (2018). https://doi.org/10.1016/j.fluid.2018.04.003

    Article  CAS  Google Scholar 

  13. S. V. Ushakov and A. Navrotsky, J. Am. Ceram. Soc. 95, 1463 (2012). https://doi.org/10.1111/j.1551-2916.2012.05102.x

    Article  CAS  Google Scholar 

  14. D. M. Price, Thermochim. Acta 367–368, 253 (2001). https://doi.org/10.1016/S0040-6031(00)00676-6

    Article  Google Scholar 

  15. D. M. Price, Thermochim. Acta 622, 44 (2015). https://doi.org/10.1016/j.tca.2015.04.030

    Article  CAS  Google Scholar 

  16. J. R. Opfermann, E. Kaisersberger, and H. J. Flammersheim, Thermochim. Acta 391, 119 (2002). https://doi.org/10.1016/S0040-6031(02)00169-7

    Article  CAS  Google Scholar 

  17. G. A. Semenov, E. N. Nikolaev, and K. E. Frantseva, Application of Mass Spectrometry in Inorganic Chemistry (Khimiya, Leningrad, 1976) [in Russian].

    Google Scholar 

  18. V. L. Stolyarova and G. A. Semenov, Mass Spectrometric Study of the Vaporization of Oxide Systems (Wiley, Chichester, 1994).

    Google Scholar 

  19. V. L. Stolyarova, CALPHAD 64, 258 (2019). https://doi.org/10.1016/J.CALPHAD.2018.12.013

    Article  CAS  Google Scholar 

  20. E. N. Kablov, Y. I. Folomeikin, V. L. Stolyarova, and S. I. Lopatin, Dokl. Phys. Chem. 463, 150 (2015). https://doi.org/10.1134/S0012501615070039

    Article  CAS  Google Scholar 

  21. V. L. Stolyarova, Russ. Chem. Rev. 85, 60 (2016). https://doi.org/10.1070/RCR4549

    Article  CAS  Google Scholar 

  22. M. M. Shul’ts, I. Y. Archakov, M. V. Sazonova, and V. L. Stolyarova, Sov. J. Glass Phys. Chem. 16, 158 (1991).

    Google Scholar 

  23. V. L. Stolyarova, I. Y. Archakov, A. N. Gordeev, et al., Rapid Commun. Mass Spectrom. 7, 127 (1993). https://doi.org/10.1002/rcm.1290070203

    Article  CAS  Google Scholar 

  24. V. G. Sevastyanov, E. P. Simonenko, N. P. Simonenko, et al., Mater. Chem. Phys. 153, 78 (2015). https://doi.org/10.1016/j.matchemphys.2014.12.037

    Article  CAS  Google Scholar 

  25. V. A. Vorozhtcov, V. L. Stolyarova, M. V. Chislov, et al., J. Mater. Res. 34, 3326 (2019). https://doi.org/10.1557/jmr.2019.206

    Article  CAS  Google Scholar 

  26. V. L. Stolyarova, V. A. Vorozhtcov, S. I. Lopatin, and V. L. Ugolkov, Thermochim. Acta 685, 178531 (2020). https://doi.org/10.1016/j.tca.2020.178531

    Article  CAS  Google Scholar 

  27. T. Meisel, K. Seybold, and D. Schultze, CRC Crit. Rev. Anal. Chem. 12, 267 (1981). https://doi.org/10.1080/10408348108542748

    Article  CAS  Google Scholar 

  28. P. Brož and F. Zelenka, Int. J. Mass Spectrom. 383, 13 (2015). https://doi.org/10.1016/j.ijms.2015.04.002

    Article  CAS  Google Scholar 

  29. P. Brož, F. Zelenka, J. Sopoušek, et al., CALPHAD 65, 86 (2019). https://doi.org/10.1016/j.calphad.2019.02.007

    Article  CAS  Google Scholar 

  30. N. Jacobson, D. Kobertz, and D. Sergeev, CALPHAD 65, 111 (2019). https://doi.org/10.1016/j.calphad.2019.01.004

    Article  CAS  Google Scholar 

  31. P. Brož, M. Hejduková, V. Vykoukal, et al., CALPHAD 64, 334 (2019). https://doi.org/10.1016/j.calphad.2019.01.013

    Article  CAS  Google Scholar 

  32. P. Brož, F. Zelenka, Z. Kohoutek, et al., CALPHAD 65, 1 (2019). https://doi.org/10.1016/j.calphad.2019.01.012

    Article  CAS  Google Scholar 

  33. Knudsen Effusion Mass Spectrometry Electronic Resource, Mass Spectrometry Instruments Ltd. https://www.massint.co.uk/kems/knudsen-effusion-ms.php. Accessed April 14, 2020.

  34. J. Y. Colle and F. Capone, Rev. Sci. Instrum. 79, 055105 (2008). https://doi.org/10.1063/1.2918135

    Article  CAS  PubMed  Google Scholar 

  35. V. A. Vorozhtcov, V. L. Stolyarova, S. I. Lopatin, et al., Rapid Commun. Mass Spectrom. 31, 111 (2017). https://doi.org/10.1002/rcm.7764

    Article  CAS  PubMed  Google Scholar 

  36. R. J. M. Konings, O. Beneš, A. Kovács, et al., J. Phys. Chem. Ref. Data 43, 013101 (2014). https://doi.org/10.1063/1.4825256

    Article  CAS  Google Scholar 

  37. L. V. Gurvich, I. V. Veitz, V. A. Medvedev, et al., Thermodynamic Properties of Individual Substances (Nauka, Moscow, 1982), Vol. 4, Part 2 [in Russian].

    Google Scholar 

  38. R. Babu and K. Nagarajan, J. Alloys Compd. 265, 137 (1998). https://doi.org/10.1016/S0925-8388(97)00430-1

    Article  CAS  Google Scholar 

  39. A. R. Kopan’, M. P. Gorbachuk, S. M. Lakiza, and Y. S. Tishchenko, Powder Metall. Met. Ceram. 54, 696 (2016). https://doi.org/10.1007/s11106-016-9764-5

    Article  CAS  Google Scholar 

  40. F. A. López-Cota, N. M. Cepeda-Sánchez, J. A. Díaz-Guillén, et al., J. Am. Ceram. Soc. 100, 1994 (2017). https://doi.org/10.1111/jace.14712

    Article  CAS  Google Scholar 

  41. S. V. Ushakov, A. Navrotsky, J. A. Tangeman, and K. B. Helean, J. Am. Ceram. Soc. 90, 1171 (2007). https://doi.org/10.1111/j.1551-2916.2007.01592.x

    Article  CAS  Google Scholar 

  42. V. A. Vorozhtcov, V. L. Stolyarova, S. I. Lopatin, et al., J. Alloys Compd. 735, 2348 (2018). https://doi.org/10.1016/J.JALLCOM.2017.11.319

    Article  CAS  Google Scholar 

  43. M. Knudsen, Ann. Phys. 336, 205 (1909). https://doi.org/10.1002/andp.19093360110

    Article  Google Scholar 

  44. M. Knudsen, Ann. Phys. 29, 999 (1909).

    Article  Google Scholar 

  45. M. Knudsen, Ann. Phys. 334, 179 (1909). https://doi.org/10.1002/andp.19093340614

    Article  Google Scholar 

  46. E. K. Kazenas and Y. V. Tsvetkov, Thermodynamics of Evaporation of Oxides (LKI, Moscow, 2008) [in Russian].

    Google Scholar 

  47. V. L. Stolyarova, V. A. Vorozhtcov, and S. I. Lopatin, in Proceedings of the 22nd International Conference on Chemical Thermodynanics in Russia (Petropolis PH, St. Petersburg, 2019), p. 40.

  48. L. N. Sidorov and V. B. Shol’ts, Int. J. Mass Spectrom. Ion Phys. 8, 437 (1972). https://doi.org/10.1016/0020-7381(72)80014-7

    Article  CAS  Google Scholar 

  49. L. N. Sidorov and P. A. Akishin, Dokl. Akad. Nauk SSSR 151, 136 (1963).

    CAS  Google Scholar 

Download references

Funding

This study was funded by the Russian Foundation for Basic Research (grant nos. 13-03-00718 and 19-03-00721).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. L. Stolyarova.

Ethics declarations

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stolyarova, V.L., Vorozhtcov, V.A. High Temperature Study of Oxide Systems: Thermal Analysis and Knudsen Effusion Mass Spectrometry. Russ. J. Phys. Chem. 94, 2640–2647 (2020). https://doi.org/10.1134/S0036024420130257

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024420130257

Keywords:

Navigation