Skip to main content
Log in

Structure of the Local Environment and Hyperfine Interactions of 57Fe Probe Nuclei in AMnO3 (A = Sc, In)

  • SYNTHESIS AND PROPERTIES OF INORGANIC COMPOUNDS
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

The results of a Mössbauer study of hyperfine interactions of 57Fe probe nuclei in isostructural hexagonal manganites h-ScMnO3 and h-InMnO3 are presented. The results of measurements of the Mössbauer spectra at T > TN, as well as calculations of the parameters of the electric field gradient tensor at 57Fe nuclei, demonstrated different behavior of the probe iron ions in these isostructural systems, reflecting the difference in the processes of defect formation in their crystal lattices. On the contrary, measurements at T < TN did not reveal any differences in the local magnetic structure of 57Fe probe atoms in these oxides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. W. C. Koehler, H. L. Yakel, E. O. Wollan, et al., Phys. Lett. A. 9, 93 (1964). https://doi.org/10.1016/0031-9163(64)90089-7

    Article  CAS  Google Scholar 

  2. V. E. Wood, A. E. Austin, E. W. Collings, et al., Phys. Chem. Solids 34, 859 (1973). https://doi.org/10.1016/S0022-3697(73)80088-5

    Article  CAS  Google Scholar 

  3. M. Fiebig, D. Frohlich, T. Lottermoser, et al., Phys. Rev. B 65, 224421 (2002). https://doi.org/10.1103/PhysRevB.65.224421

    Article  CAS  Google Scholar 

  4. A. Munoz, J. A. Alonso, M. J. Matinez-Lope, et al., Phys. Rev. B 62, 9498 (2000). https://doi.org/10.1103/PhysRevB.62.9498

    Article  CAS  Google Scholar 

  5. B. Lorenz, ISRN Condens. Matter. Phys. 2013, 497073 (2013). https://doi.org/10.1155/2013/497073

    Article  CAS  Google Scholar 

  6. K. Uusi-Esko, Diss. for the Degree of Doctor of Science in Technology, Aalto University Press, Helsinki (2011).

  7. K. Uusi-Esko, J. Malm, N. Imamura, et al., M. Mater. Chem. Phys. 112, 1029 (2008). https://doi.org/10.1016/j.matchemphys.2008.07.009

    Article  CAS  Google Scholar 

  8. H. L. Yakel, W. C. Koehler, E. F. Bertaut, et al., Acta Crystallogr. 16, 957 (1963). https://doi.org/10.1107/S0365110X63002589

    Article  CAS  Google Scholar 

  9. O. M. Fedorova, V. F. Balakirev, and Y. V. Golikov, Russ. J. Inorg. Chem. 56, 173 (2011). https://doi.org/10.1134/S0036023611020070

    Article  CAS  Google Scholar 

  10. M. A. Gilleo, Acta Crystallogr. 10, 161 (1957). https://doi.org/10.1107/S0365110X57000535

    Article  CAS  Google Scholar 

  11. H. L. Yakel, Acta Crystallogr. 8, 394 (1955). https://doi.org/10.1107/S0365110X55001291

    Article  CAS  Google Scholar 

  12. A. A. Belik, S. Kamba, M. Savinov, et al., Phys. Rev. B 79, 054411 (2009). https://doi.org/10.1103/PhysRevB.79.054411

    Article  CAS  Google Scholar 

  13. J. E. Greedan, M. Bieringer, J. F. Britten, et al., J. Solid State Chem. 116, 118 (1995). https://doi.org/10.1006/jssc.1995.1192

    Article  CAS  Google Scholar 

  14. X. Fabreges, I. Mirebeau, S. Petit, et al., Phys. Rev. B 84, 054455 (2011). https://doi.org/10.1103/PhysRevB.84.054455

    Article  CAS  Google Scholar 

  15. W. Yi, I. A. Presniakov, A. V. Sobolev, et al., Sci. Technol. Adv. Mater. 16, 024801 (2015). https://doi.org/10.1088/1468-6996/16/2/024801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. I. S. Glazkova, A. V. Sobolev, W. Yi, et al., J. Exp. Theor. Phys. 126, 514 (2018). https://doi.org/10.1134/S1063776118030135

    Article  CAS  Google Scholar 

  17. I. S. Glazkova, M. N. Smirnova, O. N. Kondrat’eva, et al., Russ. J. Inorg. Chem. 68 (2023). https://doi.org/10.1134/S0036023623600387

  18. Yu. A. Teterin, M. N. Smirnova, K. I. Maslakov, et al., Russ. J. Inorg. Chem. 68, 801 (2023). https://doi.org/10.1134/S0036023623600831

    Article  Google Scholar 

  19. H. Chen, T. Yu, and P. Gao, Inorg. Chem. 52, 9692 (2013). https://doi.org/10.1021/ic4016838

    Article  CAS  PubMed  Google Scholar 

  20. V. Petricek, M. Dusek, and L. Palatinus, Z. Crystallogr. 229, 345 (2014). https://doi.org/10.1515/zkri-2014-1737

  21. E. Cockayne, I. Levin, H. Wu, et al., Phys. Rev. B 87, 184413 (2013). https://doi.org/10.1103/PhysRevB.87.184413

    Article  CAS  Google Scholar 

  22. M. F. Bekheet, I. Svoboda, N. Liu, et al., J. Solid State Chem. 241, 54 (2016). https://doi.org/10.1016/j.jssc.2016.05.031

    Article  CAS  Google Scholar 

  23. A. V. Sobolev, A. A. Akulenko, I. S. Glazkova, et al., J. Phys. Chem. C 122, 19767 (2018). https://doi.org/10.1021/acs.jpcc.8b05516

    Article  CAS  Google Scholar 

  24. M. E. Matsnev and V. S. Rusakov, AIP Conf. Proc. 1489, 178 (2012). https://doi.org/10.1063/1.4759488

    Article  CAS  Google Scholar 

  25. F. Menil, J. Phys. Chem. Solids 46, 763 (1985). https://doi.org/10.1016/0022-3697(85)90001-0

    Article  CAS  Google Scholar 

  26. I. A. Presniakov, V. S. Rusakov, T. V. Gubaidulina, et al., Phys. Rev. B 76, 214407 (2007). https://doi.org/10.1103/PhysRevB.76.214407

    Article  CAS  Google Scholar 

  27. Y. S. Glazkova, N. Terada, Y. Matsushita, et al., Inorg. Chem. 54, 9081 (2015). https://doi.org/10.1021/acs.inorgchem.5b01472

    Article  CAS  PubMed  Google Scholar 

  28. S. J. Kim, G. Demazeau, I. A. Presnyakov, et al., Russ. J. Inorg. Chem. 48, 1394 (2003).

    Google Scholar 

  29. I. A. Presnyakov, V. S. Rusakov, A. V. Sobolev, et al., Russ. J. Inorg. Chem. 54, 1957 (2009). https://doi.org/10.1134/S0036023609120195

    Article  Google Scholar 

  30. A. A. Belik, Y. Matsushita, M. Tanaka, et al., Angew. Chem., Int. Ed. Engl. 49, 7723 (2010). https://doi.org/10.1002/anie.201003080

    Article  CAS  PubMed  Google Scholar 

  31. R. D. Shannon and R. X. Fischer, Phys. Rev. B 73, 235111 (2006). https://doi.org/10.1103/PhysRevB.73.235111

    Article  CAS  Google Scholar 

  32. A. V. Sobolev, E. S. Kozlyakova, I. S. Glazkova, et al., J. Phys. Chem. C 122, 19746 (2018). https://doi.org/10.1021/acs.jpcc.8b05122

    Article  CAS  Google Scholar 

  33. M. Azuma, K. Takata, T. Saito, et al., J. Am. Chem. Soc. 127, 8889 (2005). https://doi.org/10.1021/ja0512576

    Article  CAS  PubMed  Google Scholar 

  34. W. Yi, A. J. Princep, Y. Guo, et al., Inorg. Chem. 54, 8012 (2015). https://doi.org/10.1021/acs.inorgchem.5b01195

    Article  CAS  PubMed  Google Scholar 

  35. I. Yamada, M. Murakami, N. Hayashi, et al., Inorg. Chem. 55, 1715 (2016). https://doi.org/10.1021/acs.inorgchem.5b02623

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The work was supported by the Russian Science Foundation (project no. 19-73-10034).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. S. Glazkova.

Ethics declarations

The authors declare no conflicts of interest.

Additional information

Translated by G. Kirakosyan

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sobolev, A.V., Šandalova, S., Smirnova, M.N. et al. Structure of the Local Environment and Hyperfine Interactions of 57Fe Probe Nuclei in AMnO3 (A = Sc, In). Russ. J. Inorg. Chem. 68, 1349–1356 (2023). https://doi.org/10.1134/S0036023623601812

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023623601812

Keywords:

Navigation