Skip to main content
Log in

Sm3TaO7: Heat Capacity and Thermal Expansion

  • SYNTHESIS AND PROPERTIES OF INORGANIC COMPOUNDS
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

The molar heat capacity of Sm3TaO7 was determined by relaxation, adiabatic and differential scanning calorimetry in the region of 2–1350 K and the thermodynamic functions were calculated. The total contribution of the Schottky anomaly to the heat capacities of samarium tantalate was evaluated. The temperature dependences of the parameters of the orthorhombic crystal lattice of the space group C2221 in the temperature range of 300–1204 K have been determined and the coefficients of thermal expansion have been estimated. The temperature dependence of heat capacity of samarium tantalate exhibits an anomaly in the region of 1116–1275 K associated with the structural phase transition. The space group of the high-temperature orthorhombic phase Sm3TaO7 is identified as Cmcm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Y. Zhou, G. Gan, Z. Ge, J. Feng, Mater. Res. Express. 7, 015204 (2020). https://doi.org/10.1088/2053-1591/ab669f

    Article  CAS  Google Scholar 

  2. F. A. Rojdestvensky, M. G. Zuev, A. A. Fateev, Tantalates of Trivalent Metals (Nauka, Moscow, 1986) [in Russian].

    Google Scholar 

  3. P. A. Arsen’ev, V. B. Glushkova, A. A. Evdokimov, et al., Compounds of Rare-earth Elements: Zirconates, Hafnates, Niobates, Tantalates, Antimonates (Nauka, Moscow, 1985) [in Russian].

    Google Scholar 

  4. A. V. Tyurin, A. V. Khoroshilov, V. N. Guskov, et al., Russ. J. Inorg. Chem. 63, 1599 (2018). https://doi.org/10.1134/S0036023618120215

    Article  CAS  Google Scholar 

  5. V. N. Guskov and K. S. Gavrichev, Russ. J. Inorg. Chem. 66, 1947 (2021). https://doi.org/10.1134/S0036023621130088

    Article  CAS  Google Scholar 

  6. K. I. Portnoi, N. I. Timofeeva, and S. E. Salibekov, Izv. Akad. Nauk SSSR, Neorg. Mater. 6, 289 (1970).

    CAS  Google Scholar 

  7. M. Yoshimura, Y. Yokogawa, and S. Somia, J. Mater. Sci. Lett. 5, 1022 (1986). https://doi.org/10.1007/bf01730270

    Article  CAS  Google Scholar 

  8. Y. Yokogawa, M. Yoshimura, J. Am. Ceram. Soc. 80, 1965 (1977). https://doi.org/10.1111/j.1151-2916.1997.tb03079.x

    Article  Google Scholar 

  9. V. P. Sirotinkin, A. A. Evdokimov, and V. K. Trunov, Russ. J. Inorg. Chem. 27, 931(1982).

    Google Scholar 

  10. H. P. Rooksby and E. A. D. White, J. Am. Ceram. Soc. 47, 94 (1964). https://doi.org/10.1111/j.1151-2916.1964.tb15663x

    Article  CAS  Google Scholar 

  11. Y. Yokogawa, M. Yoshimura, and S. Somiura, Sol. State Ionics 2830, 1250 (1988). https://doi.org/10.1016/0167-2738(88)90365-7

    Article  Google Scholar 

  12. M. Wakeshima, H. Nishimine, and Y. Hinatsu, J. Phys.: Condens. Matter. 16, 4103 (2004). https://doi.org/10.1088/0953-8984/16/23/02

    Article  CAS  Google Scholar 

  13. W. T. Fu, and D. J. W. Ijdo, J. Solid State Chem. 182, 2451 (2009). https://doi.org/10.1016/j.jssc.2009.06.028

    Article  CAS  Google Scholar 

  14. T. Subramani and A. Navrotsky, Inorg. Chem. 58, 16126 (2018). https://doi.org/10.1021/acs.inorgchem.9b02675

    Article  CAS  Google Scholar 

  15. Y. Hinatsu and Y. Doi, J. Ceram. Soc. Japan. 126, 743 (2018). https://doi.org/10.2109/jcersj2.18054

    Article  CAS  Google Scholar 

  16. L. Chen, P. Wu, and J. Feng, Int. J. Appl. Ceram. Tech. 16, 230 (2018). https://doi.org/10.1111/ijac.13079

    Article  CAS  Google Scholar 

  17. Y. Zhou, G. Gan, Z. Ge, et al., J. Asian Ceram. Soc. 9, 629 (2021). https://doi.org/10.1080/21870764.2021.1907025

    Article  Google Scholar 

  18. Y. Zhou, G. Gan, Z. Ge Z, et al., J. Mater. Res. 35, 2230 (2020). https://doi.org/10.1557/jmr.2020.167

    Article  CAS  Google Scholar 

  19. W. Sang, H. Zhang, H. Chen, et al., Proces. Appl. Ceram. 15, 306 (2021). https://doi.org/10.2298/PAC2103306S

    Article  CAS  Google Scholar 

  20. A. N. Klimenko, V. S. Sergeev, V. P. Sirotinkin, Izv. Akad. Nauk SSSR, Neorg. Mater. 24, 1052 (1988).

    CAS  Google Scholar 

  21. A. V. Guskov, P. G. Gagarin, V. N. Guskov, et al., Russ. J. Inorg. Chem. 66, 1512 (2021). https://doi.org/10.1134/S0036023621100077

    Article  CAS  Google Scholar 

  22. https://www.qdusa.com/products/ppms.html

  23. M. A. Ryumin, G. E. Nikoforova, A. V. Tyurin, et al., Inorg. Mater. 56, 97 (2020). https://doi.org/10.1134/S0020168520010148

    Article  CAS  Google Scholar 

  24. M. E. Wieser, Pure Appl. Chem. 78, 2051 (2006). https://doi.org/10.1351/pac200678112051

    Article  CAS  Google Scholar 

  25. G. G. Maier and K. Kelley, J. Am. Chem. Soc. 54, 3243 (1932). https://doi.org/10.1021/ja01347a029

    Article  CAS  Google Scholar 

  26. R. J. M. Konings, O. Beneš, A. Kovács, et al., J. Phys. Chem. Refer. Data 43, 013101 (2014).https://doi.org/10.1063/1.4825256

    Article  CAS  Google Scholar 

  27. K. T. Jacob, C. Shekhar, and Y. Waseda, J. Chem. Thermodyn. 41, 748 (2009). https://doi.org/10.1016/j.jct.2008.12.006

    Article  CAS  Google Scholar 

  28. M. Wakeshima and Y. Hinatsu, J. Solid State Chem. 179, 3575 (2006). https://doi.org/101016/j.jssc.2006.07.033

    Article  CAS  Google Scholar 

  29. A. L. Voskov, I. B. Kutsenok, and G. F. Voronin, Calphad 61, 50 (2018). https://doi.org/10.1016/j.calphad.2018.02.001

    Article  CAS  Google Scholar 

  30. G. F. Voronin and I. B. Kutsenok, J. Chem. Eng. Data 58, 2083 (2013). https://doi.org/10.1021/je400316m

    Article  CAS  Google Scholar 

  31. R. D. Chirico and E. F. Westrum, Ir, J. Chem. Thermodyn. 12, 71 (1980). https://doi.org/10.1016/0021-9614(80)90118-4

    Article  CAS  Google Scholar 

  32. E. F. Westrum Jr., J. Thermal Anal. 30, 1209 (1085). https://doi.org/10.1007/bf01914288

  33. A. V. Guskov, P. G. Gagarin, V. N. Guskov, et al., Russ. J. Phys. Chem. 96, 834 (2022). https://doi.org/10.31857/S0044453722060115

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was carried out using equipment at the Center for Collective Use of the Physical methods of Investigation of the Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences. The authors acknowledge Cand. Sci. (Chem.) V.V. Voronov for assistance in X‑ray diffraction studies.

Funding

This work was supported by the Russian Science Foundation (project no. 18-13-00025). https://rscf.ru/project/18-13-00025.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. N. Guskov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gagarin, P.G., Guskov, A.V., Guskov, V.N. et al. Sm3TaO7: Heat Capacity and Thermal Expansion. Russ. J. Inorg. Chem. 67, 2183–2192 (2022). https://doi.org/10.1134/S0036023622602070

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023622602070

Keywords:

Navigation