Skip to main content
Log in

Features of Copper(II) Oxide Synthesis in Combustion Reactions with Glycine and Citric Acid

  • SYNTHESIS AND PROPERTIES OF INORGANIC COMPOUNDS
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Effect of citric acid (φ = 0.5–1.3) and glycine (φ = 0.5; 0.7–0.9) ratio on the rate of combustion reactions, phase composition, and particle size of CuOx powder obtained from copper nitrate solution under conditions of open and closed reactors has been considered. Modeling of combustion reactions for the synthesis of CuOx has shown that calculations of Tmax by equation derived for synthesis in combustion reactions are possible also for thermolysis or pyrolysis reactions. Formation, morphology, and dispersity of samples after completion of combustion reactions and thermal treatment at 500°C have been studied by X-ray diffraction and electron microscopy. The characteristics of combustion profiles display transition from bulk combustion mode to self-propagating high-temperature synthesis and further to thermolysis of xerogels when citric acid content increases. It has been found that retardation of redox reaction rate does not decrease CuO loss due to removal of copper within organic volatile components.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. T. Putjuso, P. Manyum, R. Yimnirun, et al., Solid State Sci. 13, 158 (2011). https://doi.org/10.1016/j.solidstatesciences.2010.11.006

    Article  CAS  Google Scholar 

  2. S. Sarkar, P. K. Jana, and B. K. Chaudhuri, Appl. Phys. Lett. 89, 212905 (2006). https://doi.org/10.1063/1.2393001

    Article  CAS  Google Scholar 

  3. G. Qiu, S. Dharmarathna, Y. Zhang, et al., J. Phys. Chem. 116, 468 (2012). https://doi.org/10.1021/jp209911k

    Article  CAS  Google Scholar 

  4. J. J. Brege, C. E. Hamilton, C. A. Crouse, et al., Nano Lett. 9, 2239 (2009). https://doi.org/10.1021/nl900080f

    Article  CAS  PubMed  Google Scholar 

  5. Y. Cao, J. Fan, L. Bai, et al., Cryst. Growth. Des. 10, 232 (2010). https://doi.org/10.1021/cg9008637

    Article  CAS  Google Scholar 

  6. M. Basu, A. K. Sinha, M. Pradhan, et al., Chem. Commun. 6, 8785 (2010). https://doi.org/10.1039/C0CC03137B

    Article  Google Scholar 

  7. P. D. Gacia, L. K. Shrestha, P. Bairi, et al., Ceram. Int. 41, 9426 (2015). https://doi.org/10.1016/j.ceramint.2015.03.323

    Article  CAS  Google Scholar 

  8. H. Sadabadi, A. Aftabtalab, S. Zafarian, et al., Adv. Mater. Res. 829, 152 (2014). https://doi.org/10.4028/www.scientific.net/AMR.829.152

    Article  CAS  Google Scholar 

  9. G. R. Rao, B. G. Mishra, and H. R. Sahu, Mater. Lett. 58, 3523 (2004). https://doi.org/10.1016/j.matlet.2004.05.082

    Article  CAS  Google Scholar 

  10. A. S. Mukasyan, P. Epstein, and P. Dinka, Proceed. Combust. Inst. 31, 1789 (2007). https://doi.org/10.1016/j.proci.2006.07.052

    Article  CAS  Google Scholar 

  11. P. Dinka and A. S. Mukasyan, J. Phys. Chem. B 109, 21627 (2005). https://doi.org/10.1021/jp054486n

    Article  CAS  PubMed  Google Scholar 

  12. L. V. Ermakova, V. D. Zhuravlev, Sh. M. Khaliullin, and E. G. Vovkotrub, Thermochim. Acta 695, 178809 (2021). https://doi.org/10.1016/j.tca.2020.178809

    Article  CAS  Google Scholar 

  13. F. Deganello and A. K. Tyagi, Prog. Cryst. Growth Charact. Mater. 64, 23 (2018). https://doi.org/10.1016/j.pcrysgrow.2018.03.001

    Article  CAS  Google Scholar 

  14. A. A. Komlev and V. V. Gusarov, Inorg. Mater. 12, 1247 (2014). https://doi.org/10.1134/S0020168514120103

    Article  CAS  Google Scholar 

  15. N. A. Lomanova, M. V. Tomkovich, V. V. Sokolov, et al., Russ. J. Gen. Chem. 86, 2256 (2016). https://doi.org/10.1134/S1070363216100030

    Article  CAS  Google Scholar 

  16. N. A. Lomanova, M. V. Tomkovich, A. V. Osipov, et al., Phys. Solid State 61, 2503 (2019). https://doi.org/10.1134/S1063783419120278

    Article  Google Scholar 

  17. N. A. Lomanova, M. V. Tomkovich, D. P. Danilovich, et al., Inorg. Mater. 56, 1271 (2020). https://doi.org/10.1134/S0020168520120110

    Article  CAS  Google Scholar 

  18. I. V. Pleshakov, M. P. Volkov, N. A. Lomanova, et al., Techn. Phys. Lett. 46, 1072 (2020). https://doi.org/10.1134/S1063785020110115

    Article  CAS  Google Scholar 

  19. T. S. Cama, A. E. Petrova, V. L. Ugolkov, et al., Russ. J. Inorg. Chem. 65, 725 (2020). https://doi.org/10.1134/S0036023620050046

    Article  Google Scholar 

  20. Surisa Sa-nguanprang, Anukorn Phuruangrat, Titipun Thongtem, et al., Russ. J. Inorg. Chem. 65, 1102 (2020). https://doi.org/10.1134/S0036023620070189

    Article  Google Scholar 

  21. V. A. Ketsko, M. N. Smirnova, M. A. Kop’eva, et al., Russ. J. Inorg. Chem. 65, 1287 (2020). https://doi.org/10.1134/S0036023620090065

    Article  Google Scholar 

  22. V. D. Zhuravlev, K. V. Nefedova, and O. G. Reznitskikh, Alter. Energ. Ecol. 8, 22 (2007).

    Google Scholar 

  23. K. B. Podbolotov, A. A. Khort, A. B. Tarasov, et al., Combust. Sci. Technol. 189, 1878 (2017). https://doi.org/10.1080/00102202.2017.1334646

    Article  CAS  Google Scholar 

  24. Sh. M. Khaliullin, I. S. Popov, and V. D. Zhuravlev, Int. J. Self-Propag. High-Temp. Synt. 29, 87 (2020). https://doi.org/10.3103/S1061386220020077

    Article  CAS  Google Scholar 

  25. A. S. Mukasyan, C. Costello, K. P. Sherlock, et al., Sep. Purif. Technol. 25, 117 (2001).

    Article  CAS  Google Scholar 

  26. F. Deganello, G. Marcì, and G. Deganello, J. Eur. Ceram. Soc. 29, 439 (2009). https://doi.org/10.1016/j.jeurceramsoc.2008.06.012

    Article  CAS  Google Scholar 

  27. N. A. Morozov, O. Yu. Sinelshchikova, N. V. Besprozvannykh, et al., Glass Phys. Chem. 47, 481 (2021). https://doi.org/10.1134/S1087659621050114

    Article  CAS  Google Scholar 

  28. A. Phuruangrat, B. Kuntalue, S. Thongtem, et al., Russ. J. Inorg. Chem. 66, 332 (2021). https://doi.org/10.1134/S0036023621030128

    Article  CAS  Google Scholar 

  29. Sh. M. Khaliullin, V. D. Zhuravlev, L. V. Ermakova, et al., Int. J. Self-Propag. High-Temp. Synth. 28, 226 (2019). https://doi.org/10.3103/S1061386219040058

    Article  CAS  Google Scholar 

  30. Sh. M. Khaliullin and A. A. Koshkina, Ceram. Int. 47, 11942 (2021). https://doi.org/10.1016/j.ceramint.2021.01.035

    Article  CAS  Google Scholar 

  31. A. Kumar, E. E. Wolf, and A. S. Mukasyan, AlChE J. 57, 2207 (2011). https://doi.org/10.1002/aic.12416

    Article  CAS  Google Scholar 

  32. S. I. Roslyakov, D. Yu. Kovalev, A. S. Rogachev, et al., Dokl. Akad. Nauk 449, 313 (2013). https://doi.org/10.7868/S086956521309017X

    Article  Google Scholar 

  33. Sh. M. Khaliullin, V. G. Bamburov, O. V. Russkikh, et al., Dokl. Chem. 461, 93 (2015). https://doi.org/10.1134/S0012500815040011

    Article  CAS  Google Scholar 

  34. B. Małecka, A. Łącz, E. Drożdż, et al., J. Therm. Anal. Calorim. 119, 1053. https://doi.org/10.1007/s10973-014-4262-9

  35. Sh. M. Khaliullin, V. D. Zhuravlev, V. G. Bamburov, et al., J. Sol-Gel Sci. Technol. 93, 251 (2020). https://doi.org/10.1007/s10971-019-05189-8

    Article  CAS  Google Scholar 

Download references

Funding

This work was performed according to the State Assignment and Research Plans for the Institute of Solid-State Chemistry, Ural Branch, Russian Academy of Sciences, (project no. АААА-А19-119031890026-6).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. D. Zhuravlev.

Ethics declarations

The authors declare no conflicts of interest.

Additional information

Translated by I. Kudryavtsev

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhuravlev, V.D., Ermakova, L.V., Khaliullin, S.M. et al. Features of Copper(II) Oxide Synthesis in Combustion Reactions with Glycine and Citric Acid. Russ. J. Inorg. Chem. 67, 790–798 (2022). https://doi.org/10.1134/S0036023622060250

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023622060250

Keywords:

Navigation