Skip to main content
Log in

Synthesis and Study of Phases with a Hollandite-Type Structure, Crystallizing in the Systems Cs2O–M2O3(MO)–TiO2 (M = Al, Fe, Сu, Ni, Mg)

  • SYNTHESIS AND PROPERTIES OF INORGANIC COMPOUNDS
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Ceramics based on hollandites are known to mainly produced by the conventional solid-phase method. However, the use of various sol–gel methods in some cases makes it possible to change the temperature and time its synthesis, morphological characteristics, porosity, and electrophysical properties. In this work, ceramic materials based on a number of cesium titanate hollandite phases were synthesized by combustion of citrate–nitrate mixtures. The structure of the obtained materials was studied by X-ray powder diffraction analysis and scanning electron microscopy. Investigation of the electrophysical properties showed that, in a hydrogen flow, the electrical conductivity of hollandites with aluminum and nickel increases significantly (by 2.5–3 orders of magnitude) throughout the studied temperature range. Thus, ceramics based on these hollandites can be considered promising for creating hydrogen sensors and fuel cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. A. V. Knyazev, M. Mączka, I. V. Ladenkov, et al., J. Solid State Chem. 196, 110 (2012). https://doi.org/10.1016/j.jssc.2012.05.043

    Article  CAS  Google Scholar 

  2. A. V. Knyazev, N. G. Chernorukov, I. V. Ladenkov, et al., Russ. J. Inorg. Chem. 56, 1702 (2011). https://doi.org/10.1134/S0036023611110131

    Article  CAS  Google Scholar 

  3. S. Furusawa, T. Suemoto, and M. Ishigame, Phys. Rev. B. 38, 12600 (1988). https://doi.org/10.1103/PhysRevB.38.12600

    Article  CAS  Google Scholar 

  4. I. E. Grey, I. C. Madsen, J. A. Watts, et al., J. Solid State Chem. 58, 350 (1985). https://doi.org/10.1016/0022-4596(85)90217-8

    Article  CAS  Google Scholar 

  5. M. Zhao, P. Russell, J. Amoroso, et al., J. Mater. Sci. 55, 6401 (2020). https://doi.org/10.1007/s10853-020-04447-3

    Article  CAS  Google Scholar 

  6. M. Pilarski, R. Marschall, S. Gross, et al., Appl. Catal. 227, 349 (2018). https://doi.org/10.1016/j.apcatb.2018.01.039

    Article  CAS  Google Scholar 

  7. B. M. Gatehouse, Acta Crystallogr. Sect. C. 45, 1674 (1989). https://doi.org/10.1107/S010827018900418X

    Article  Google Scholar 

  8. M. Ohashi, Solid State Ionics 172, 31 (2004). https://doi.org/10.1016/j.ssi.2004.01.035

    Article  CAS  Google Scholar 

  9. A. Kudo and T. Kondo, J. Mater. Chem. 7, 777 (1997). https://doi.org/10.1039/A606297K

    Article  CAS  Google Scholar 

  10. N. V. Gorshkov, D. A. Mikhailova, M. A. Vikulova, et al., Russ. J. Inorg. Chem. 66, 1121 (2021). https://doi.org/10.1134/S0036023621080076

    Article  CAS  Google Scholar 

  11. N. Gorshkov, M. Vikulova, M. Gorbunov, et al., Ceram. Int. 47, 5721 (2021). https://doi.org/10.1016/j.ceramint.2020.10.158

    Article  CAS  Google Scholar 

  12. N. V. Besprozvannykh, O. Yu. Sinel’shchikova, N. A. Morozov, et al., Russ. J. Appl. Chem. 93, 1132 (2020). https://doi.org/10.1134/S1070427220080042

    Article  CAS  Google Scholar 

  13. S. A. Petrov, L. F. Grigor’eva, I. Yu. Sazeev, et al., Neorgan. Materialy 30, 963 (1994).

    CAS  Google Scholar 

  14. P. Tumurugoti, B. M. Clark, D. J. Edwards, et al., J. Solid State Chem. 246, 107 (2017). https://doi.org/10.1016/j.jssc.2016.11.007

    Article  CAS  Google Scholar 

  15. A. Y. Leinekugel-le-Cocq, P. Deniard, S. Jobic, et al., J. Solid State Chem. 179, 3196 (2006). https://doi.org/10.1016/j.jssc.2006.05.047

    Article  CAS  Google Scholar 

  16. R. Grote, M. Zhao, L. Shuller-Nickles, et al., J. Mater. Sci. 54, 1112 (2019). https://doi.org/10.1007/s10853-018-2904-1

    Article  CAS  Google Scholar 

  17. A. E. Ringwood, S. E. Kesson, N. G. Ware, et al., Geochem. J. 13, 141 (1979).

    Article  CAS  Google Scholar 

  18. B. Shabalin, Y. Titov, B. Zlobenko, et al., Mineralogical J. (Ukraine) 35, 12 (2013).

    CAS  Google Scholar 

  19. L. F. Grigor’eva, S. A. Petrov, O. Yu. Sinel’shchikova, et al., Glass Phys. Chem. 33, 613 (2007). https://doi.org/10.1134/S1087659607060132

    Article  CAS  Google Scholar 

  20. C. Cao, K. Singh, W. Hay Kan, et al., Inorg. Chem. 58, 4782 (2019). https://doi.org/10.1021/acs.inorgchem.8b03152

    Article  CAS  PubMed  Google Scholar 

  21. B. C. Mastoroudes, J. Markgraaff, J. B. Wagener, et al., Chem. Phys. 537, 110816 (2020). https://doi.org/10.1016/j.chemphys.2020.110816

    Article  CAS  Google Scholar 

  22. M. Muthuraman, N. Arul Dhas, and K. C. Patil, Bull. Mater. Sci. 17, 977 (1994). https://doi.org/10.1007/BF02757574

    Article  CAS  Google Scholar 

  23. N. V. Besprozvannykh, O. Y. Sinel’shchikova, S. K. Kuchaeva, et al., Russ. J. Appl. Chem. 88, 192 (2015). https://doi.org/10.1134/S1070427215020020

    Article  CAS  Google Scholar 

  24. N. A. Morozov, O. Yu. Sinelshchikova, N. V. Besprozvannykh, et al., Glass Phys. Chem. 47, 481 (2021). https://doi.org/10.1134/S1087659621050114

    Article  CAS  Google Scholar 

  25. N. A. Lomanova, M. V. Tomkovich, V. V. Sokolov, et al., Russ. J. Gen. Chem. 86, 2256 (2016). https://doi.org/10.1134/S1070363216100030

    Article  CAS  Google Scholar 

  26. A. A. Komlev and V. V. Gusarov, Inorg. Mater. 50, 1247 (2014). https://doi.org/10.1134/S0020168514120103

    Article  CAS  Google Scholar 

  27. V. I. Popkov, S. G. Izotova, O. V. Almjasheva, et al., Russ. J. Inorg. Chem. 60, 1193 (2015). https://doi.org/10.1134/S0036023615100162

    Article  CAS  Google Scholar 

  28. V. I. Popkov, O. V. Almjasheva, V. N. Nevedomskiy, et al., Nanosystems: Phys. Chem. Math. 6, 866 (2015). https://doi.org/10.17586/2220-8054-2015-6-6-866-874

    Article  CAS  Google Scholar 

  29. J. Gilabert, M. D. Palacios, V. Sanz, and S. Mestre, Bol. Soc. Esp. Ceram. Vidr. 56, 215 (2017). https://doi.org/10.1016/j.bsecv.2017.03.003

    Article  CAS  Google Scholar 

  30. K. Deshpande, A. Mukasyan, and A. Varma, J. Am. Ceram. Soc. 86, 1149 (2003). https://doi.org/10.1111/j.1151-2916.2003.tb03439.x

    Article  CAS  Google Scholar 

  31. A. S. Mukasyan, C. Costello, K. P. Sherlock, et al., Sep. Purif. Technol. 25, 117 (2001). https://doi.org/10.1016/S1383-5866(01)00096-X

    Article  CAS  Google Scholar 

  32. A. A. Ostroushko and O. V. Russkikh, Nanosystems: Phys. Chem. Math. 8, 476 (2017). https://doi.org/10.17586/2220-8054-2017-8-4-476-502

    Article  CAS  Google Scholar 

  33. Sh. M. Khaliullin, V. D. Zhuravlev, and V. G. Bamburov, I Int. J. Self-Propag. High-Temp Synth. 26, 93 (2017). https://doi.org/10.3103/S1061386217020078

    Article  CAS  Google Scholar 

  34. A. Phuruangrat, B. Kuntalue, S. Thongtem, and T. Thongtem, Russ. J. Inorg. Chem. 66, 332 (2021). https://doi.org/10.1134/S0036023621030128

    Article  CAS  Google Scholar 

  35. V. A. Ketsko, M. N. Smirnova, M. A. Kop’eva, et al., Russ. J. Inorg. Chem. 65, 1287 (2020). https://doi.org/10.1134/S0036023620090065

    Article  Google Scholar 

  36. Sh. M. Khaliullin and A. A. Koshkina, Ceram. Int. 47, 11942 (2021). https://doi.org/10.1016/j.ceramint.2021.01.035

    Article  CAS  Google Scholar 

  37. D. S. Ershov, N. V. Besprozvannykh, and O. Yu. Sinel’shchikova, Glass Phys. Chem. 46, 329 (2020). https://doi.org/10.1134/S1087659620040057

    Article  CAS  Google Scholar 

  38. N. A. Morozov, O. Yu. Sinelshchikova, N. V. Besprozvannykh, and T. P. Maslennikova, Russ. J. Inorg. Chem. 65, 1127 (2020). https://doi.org/10.1134/S0036023620080124

    Article  CAS  Google Scholar 

  39. N. A. Lomanova, M. V. Tomkovich, A. V. Osipov, et al., Phys. Solid State 61, 2535 (2019). https://doi.org/10.1134/S1063783419120278

    Article  CAS  Google Scholar 

  40. N. A. Lomanova, M. V. Tomkovich, V. V. Sokolov, et al., J. Nanopart. Res. 20, 17 (2018). https://doi.org/10.1007/s11051-018-4125-6

    Article  CAS  Google Scholar 

  41. R. D. Shannon, Acta Crystallogr. Sect. A A32, 751 (1976). https://doi.org/10.1107/S0567739476001551

    Article  CAS  Google Scholar 

  42. E. S. Kesson and T. Y. White, J. Solid State Chem. 63, 122 (1986). https://doi.org/10.1016/0022-4596(86)90160-X

    Article  CAS  Google Scholar 

  43. K. H. Yoon, S. Han, D. H. Kang, and T. H. Kim, J. Mater. Sci. 33, 417 (1998). https://doi.org/10.1023/A:1004380015500

    Article  CAS  Google Scholar 

  44. Y. Xu, Y. Wen, R. Grote, et al., Sci. Rep. 6, 27412 (2016). https://doi.org/10.1038/srep27412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. V. Galstyan, Sensors 17, 2947 (2017). https://doi.org/10.3390/s17122947

    Article  CAS  PubMed Central  Google Scholar 

  46. N. V. Gorshkov, V. G. Goffman, M. A. Vikulova, et al., J. Electroceram. 40, 306 (2018). https://doi.org/10.1007/s10832-018-0131-4

    Article  CAS  Google Scholar 

Download references

Funding

This work was performed under a State Assignment for the Grebenshchikov Institute of Silicate Chemistry, Russian Academy of Sciences, St. Petersburg, Russia (subject no. 0081-2022-0008).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Yu. Sinel’shchikova.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by V. Glyanchenko

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sinel’shchikova, O.Y., Besprozvannykh, N.V., Rogova, D.A. et al. Synthesis and Study of Phases with a Hollandite-Type Structure, Crystallizing in the Systems Cs2O–M2O3(MO)–TiO2 (M = Al, Fe, Сu, Ni, Mg). Russ. J. Inorg. Chem. 67, 963–969 (2022). https://doi.org/10.1134/S0036023622060213

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023622060213

Keywords:

Navigation