Skip to main content
Log in

Triethanolamine-Assisted Hydrothermal Synthesis of Hierarchically Organized Nickel Oxide Particles

  • SYNTHESIS AND PROPERTIES OF INORGANIC COMPOUNDS
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Triethanolamine-assisted hydrothermal synthesis of hierarchical nickel oxide particles was studied. The thermal behavior, crystal structure, and spectral characteristics of α-Ni(OH)2 obtained by the hydrothermal treatment of the reaction system and subsequent drying of the solid phase were investigated. It was shown that the thermal treatment at 350°C for 1 h results in the decomposition of the obtained intermediate product to form the desired nanocrystalline oxide (average coherent scattering region size of about 6 nm). Kelvin probe force microscopy was used to construct the maps of the potential distribution over the surface of particles of the studied material and to determine the work function of its surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. K. H. Tsoi, B. P. Y. Loo, G. Tal, et al., J. Clean. Prod. 330, 129866 (2022). https://doi.org/10.1016/j.jclepro.2021.129866

    Article  CAS  Google Scholar 

  2. M. H. Abbasi, B. Abdullah, M. W. Ahmad, et al., Sustain. Energy Technol. Assessments 48, 101630 (2021). https://doi.org/10.1016/j.seta.2021.101630

    Article  Google Scholar 

  3. Y. Wang, J. Wang, and W. He, Renew. Sustain. Energy Rev. 154, 111747 (2022). https://doi.org/10.1016/j.rser.2021.111747

    Article  CAS  Google Scholar 

  4. Y. T. Kwok, R. Schoetter, and E. Ng, Sci. Total Environ. 152338 (2021). https://doi.org/10.1016/j.scitotenv.2021.152338

  5. A. Haseltalab, L. van Biert, H. Sapra, et al., Energy Convers. Manage. 245, 114625 (2021). https://doi.org/10.1016/j.enconman.2021.114625

    Article  Google Scholar 

  6. L. Tan, X. Dong, C. Chen, et al., Energy Convers. Manage. 245, 114539 (2021). https://doi.org/10.1016/j.enconman.2021.114539

    Article  Google Scholar 

  7. N. Radenahmad, A. T. Azad, M. Saghir, et al., Renew. Sustain. Energy Rev. 119, 109560 (2020). https://doi.org/10.1016/j.rser.2019.109560

    Article  CAS  Google Scholar 

  8. D. Saebea, A. Arpornwichanop, and Y. Patcharavorachot, Int. J. Hydrogen Energy 46, 11445 (2021). https://doi.org/10.1016/j.ijhydene.2020.07.264

    Article  CAS  Google Scholar 

  9. D. Tian, W. Liu, Y. Chen, et al., Mater. Res. Bull. 71, 1 (2015). https://doi.org/10.1016/j.materresbull.2015.06.042

    Article  CAS  Google Scholar 

  10. X. Yao, P. Li, B. Yu, et al., Int. J. Hydrogen Energy 42, 22192 (2017). https://doi.org/10.1016/j.ijhydene.2017.02.008

    Article  CAS  Google Scholar 

  11. K. H. Ng, H. A. Rahman, and M. R. Somalu, Int. J. Hydrogen Energy 44, 30692 (2019). https://doi.org/10.1016/j.ijhydene.2018.11.137

    Article  CAS  Google Scholar 

  12. M. V. Kalinina, L. V. Morozova, T. L. Egorova, et al., Glas. Phys. Chem. 42, 505 (2016). https://doi.org/10.1134/S1087659616050060

    Article  CAS  Google Scholar 

  13. T. L. Simonenko, M. V. Kalinina, N. P. Simonenko, et al., Glass. Phys. Chem. 44, 314 (2018). https://doi.org/10.1134/S1087659618040144

    Article  CAS  Google Scholar 

  14. L. Zhu, X. Liu, F. Han, et al., Solid State Ionics 288, 115 (2016). https://doi.org/10.1016/j.ssi.2015.11.016

    Article  CAS  Google Scholar 

  15. M. Ahsan, M. Irshad, P. F. Fu, et al., Ceram. Int. 46, 2780 (2020). https://doi.org/10.1016/j.ceramint.2019.09.268

    Article  CAS  Google Scholar 

  16. T. L. Egorova, M. V. Kalinina, E. P. Simonenko, et al., Russ. J. Inorg. Chem. 61, 1061 (2016). https://doi.org/10.1134/S0036023616090047

    Article  CAS  Google Scholar 

  17. T. L. Egorova, M. V. Kalinina, E. P. Simonenko, et al., Russ. J. Inorg. Chem. 62, 1275 (2017). https://doi.org/10.1134/S0036023617100072

    Article  CAS  Google Scholar 

  18. Z. Wang, S. Wang, S. Jiao, et al., J. Alloys Compd. 702, 186 (2017). https://doi.org/10.1016/j.jallcom.2017.01.212

    Article  CAS  Google Scholar 

  19. M. K. Rath, B.-H. Choi, M.-J. Ji, et al., Ceram. Int. 40, 3295 (2014). https://doi.org/10.1016/j.ceramint.2013.09.105

    Article  CAS  Google Scholar 

  20. N. Li, K. Yuan, T. Gao, et al., Arab. J. Chem. 15, 103580 (2022). https://doi.org/10.1016/j.arabjc.2021.103580

    Article  CAS  Google Scholar 

  21. M. Mohammadi, M. Arvand, and S. Daneshvar, J. Electroanal. Chem. 904, 115934 (2022). https://doi.org/10.1016/j.jelechem.2021.115934

    Article  CAS  Google Scholar 

  22. M. Salavati-Niasari and M. Entesari, Polyhedron 33, 302 (2012). https://doi.org/10.1016/j.poly.2011.11.054

    Article  CAS  Google Scholar 

  23. A. S. Keshari and P. Dubey, J. Energy Storage 40, 102629 (2021). https://doi.org/10.1016/j.est.2021.102629

    Article  Google Scholar 

  24. Y. Yao, C. Liu, L. Luo, et al., Mater. Res. Bull. 146, 111625 (2022). https://doi.org/10.1016/j.materresbull.2021.111625

    Article  CAS  Google Scholar 

  25. M. E. Bustos, F. Hevia, S. Fuentes, et al., Mater. Lett. 297, 129936 (2021). https://doi.org/10.1016/j.matlet.2021.129936

    Article  CAS  Google Scholar 

  26. G. Xu, J. Zhao, J. Yuan, et al., J. Alloys Compd., 163163 (2021). https://doi.org/10.1016/j.jallcom.2021.163163

  27. T. L. Simonenko, V. M. Ivanova, N. P. Simonenko, et al., Russ. J. Inorg. Chem. 64, 1753 (2019). https://doi.org/10.1134/S0036023619140080

    Article  CAS  Google Scholar 

  28. J. Fan, J. Lu, Z. Sha, et al., Sci. China Chem. 64, 1596 (2021). https://doi.org/10.1007/s11426-021-1101-4

    Article  CAS  Google Scholar 

  29. Y. Zhang, J. Zhao, X. Kang, et al., Colloids Surf., A: Physicochem. Eng. Asp. 629, 127466 (2021). https://doi.org/10.1016/j.colsurfa.2021.127466

    Article  CAS  Google Scholar 

  30. X. Wan, M. Yuan, S. Tie, et al., Appl. Surf. Sci. 277, 40 (2013). https://doi.org/10.1016/j.apsusc.2013.03.126

    Article  CAS  Google Scholar 

  31. T. R. Madhura, G. G. Kumar, and R. Ramaraj, J. Solid State Electrochem. 24, 3073 (2020). https://doi.org/10.1007/s10008-020-04763-3

    Article  CAS  Google Scholar 

  32. L. Zhou, W. Zeng, and Y. Li, Mater. Lett. 254, 92 (2019). https://doi.org/10.1016/j.matlet.2019.07.042

    Article  CAS  Google Scholar 

  33. B. Liu, H. Yang, H. Zhao, et al., Sens. Actuators, B: Chem. 156, 251 (2011). https://doi.org/10.1016/j.snb.2011.04.028

    Article  CAS  Google Scholar 

  34. B. Miao, W. Zeng, L. Lin, et al., Physica E: Low-Dimensional Syst. Nanostructures 52, 40 (2013). https://doi.org/10.1016/j.physe.2013.03.006

    Article  CAS  Google Scholar 

  35. Y. Yu, Y. Xia, W. Zeng, et al., Mater. Lett. 206, 80 (2017). https://doi.org/10.1016/j.matlet.2017.06.119

    Article  CAS  Google Scholar 

  36. Y. Chung, H. Park, E. Lee, et al., J. Electrochem. Soc. 163, B624 (2016). https://doi.org/10.1149/2.0751613jes

    Article  CAS  Google Scholar 

  37. J. Singh, S. Lee, S. Kim, et al., J. Alloys Compd. 850, 156755 (2021). https://doi.org/10.1016/j.jallcom.2020.156755

    Article  CAS  Google Scholar 

  38. M. Rajamathi and P. Vishnu Kamath, Bull. Mater. Sci. 23, 355 (2000). https://doi.org/10.1007/BF02708384

    Article  CAS  Google Scholar 

  39. H. Chen, B. Liu, Q. Yang, et al., Mater. Lett. 199, 124 (2017). https://doi.org/10.1016/j.matlet.2017.04.066

    Article  CAS  Google Scholar 

  40. Y. Cai, J. Ma, and T. Wang, J. Alloys Compd. 582, 328 (2014). https://doi.org/10.1016/j.jallcom.2013.07.206

    Article  CAS  Google Scholar 

  41. G. S. Gund, D. P. Dubal, S. B. Jambure, et al., J. Mater. Chem. A 1, 4793 (2013). https://doi.org/10.1039/c3ta00024a

    Article  CAS  Google Scholar 

  42. T. L. Simonenko, V. M. Ivanova, N. P. Simonenko, et al., Russ. J. Inorg. Chem. 64, 1753 (2019). https://doi.org/10.1134/S0036023619140080

    Article  CAS  Google Scholar 

  43. M. T. Greiner, M. G. Helander, Z.-B. Wang, et al., J. Phys. Chem. 114, 46 (2010). https://doi.org/10.1021/jp108281m

    Article  CAS  Google Scholar 

  44. A. S. Mokrushin, T. L. Simonenko, N. P. Simonenko, et al., Appl. Surf. Sci. 578, 151984 (2022). https://doi.org/10.1016/j.apsusc.2021.151984

    Article  CAS  Google Scholar 

  45. T. L. Simonenko, V. A. Bocharova, Ph. Yu. Gorobtsov, et al., Russ. J. Inorg. Chem. 65, 1292 (2020). https://doi.org/10.1134/S0036023620090193

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation (project no. 21-73-00288). https://rscf.ru/en/project/21-73-00288/.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. L. Simonenko.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by V. Glyanchenko

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Simonenko, T.L., Simonenko, N.P., Gorobtsov, P.Y. et al. Triethanolamine-Assisted Hydrothermal Synthesis of Hierarchically Organized Nickel Oxide Particles. Russ. J. Inorg. Chem. 67, 622–627 (2022). https://doi.org/10.1134/S0036023622050175

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023622050175

Keywords:

Navigation