Skip to main content
Log in

Modification of HfB2–30% SiC UHTC with Graphene (1 vol %) and Its Influence on the Behavior in a Supersonic Air Jet

  • INORGANIC MATERIALS AND NANOMATERIALS
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Oxidation under exposure to a supersonic dissociated air jet (with heat fluxes in the range 363–779 W/cm2, total exposure time: 2000 s) was studied for HfB2–30 vol % SiC ultra-high-temperature ceramics (UHTC) doped with a lowered amount (1 vol %) of reduced graphene oxide (GO). Doping the ceramics with a relatively low amount of reduced GO (1 vol %) did not prevent a dramatic increase in the average surface temperature to 2300–2400°С. However, the existence time of surface temperatures below 1800–1850°С increased considerably, probably due to an increase in the thermal conductivity of the ceramics. The ablation rate of the material was determined as 6.5 × 10–4 g/(cm2 min), which is intermediate between the respective values for HfB2–SiC ceramics and the ceramics doped by 2 vol % graphene. The microstructure features and elemental composition of the oxidized surface and chips of the material were studied. The structure and thickness of the oxidized near-surface region were determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

REFERENCES

  1. E. P. Simonenko, N. P. Simonenko, V. G. Sevast’yanov, et al. Ultra-High-Temperature Ceramic Materials: Current Problems and Trends (IP Konyakhin A. V. (Book Jet), Moscow, 2020) [in Russian].

  2. E. P. Simonenko, D. V. Sevast’yanov, N. P. Simonenko, et al., Russ. J. Inorg. Chem. 58, 1669 (2013). https://doi.org/10.1134/S0036023613140039

    Article  CAS  Google Scholar 

  3. X. Ma, C. Wei, R. Liu, et al., Corros. Sci. 182, 109283 (2021). https://doi.org/10.1016/j.corsci.2021.109283

    Article  CAS  Google Scholar 

  4. B. Mohammadzadeh, S. Jung, T. H. Lee, et al., Ceram. Int. 47, 11438 (2021). https://doi.org/10.1016/j.ceramint.2020.12.271

    Article  CAS  Google Scholar 

  5. R. Hassan and K. Balani, Corros. Sci. 177, 109024 (2020). https://doi.org/10.1016/j.corsci.2020.109024

    Article  CAS  Google Scholar 

  6. S. Jafari, M. Bavand-Vandchali, M. Mashhadi, et al., Int. J. Refract. Met. Hard Mater. 94, 105371 (2021). https://doi.org/10.1016/j.ijrmhm.2020.105371

    Article  CAS  Google Scholar 

  7. C. Xia, S. A. Delbari, Z. Ahmadi, et al., Ceram. Int. 46, 29334 (2020). https://doi.org/10.1016/j.ceramint.2020.08.054

    Article  CAS  Google Scholar 

  8. E. P. Simonenko, N. P. Simonenko, A. N. Gordeev, et al., Russ. J. Inorg. Chem. 65, 606 (2020). https://doi.org/10.1134/S0036023620040191

    Article  CAS  Google Scholar 

  9. E. P. Simonenko, N. P. Simonenko, A. S. Mokrushin, et al., Russ. J. Inorg. Chem. 64, 1849 (2019). https://doi.org/10.1134/S0036023619140109

    Article  CAS  Google Scholar 

  10. E. P. Simonenko, N. P. Simonenko, A. N. Gordeev, et al., J. Sol-Gel Sci. Technol. 92, 386 (2019). https://doi.org/10.1007/s10971-019-05029-9

    Article  CAS  Google Scholar 

  11. E. P. Simonenko, N. P. Simonenko, E. K. Papynov, et al., Russ. J. Inorg. Chem. 63, 1 (2018). https://doi.org/10.1134/S0036023618010187

    Article  CAS  Google Scholar 

  12. C. Piriou, O. Rapaud, S. Foucaud, et al., Ceram. Int. 45, 1846 (2019). https://doi.org/10.1016/j.ceramint.2018.10.075

    Article  CAS  Google Scholar 

  13. S. Mungiguerra, G. D. Di Martino, R. Savino, et al., Int. J. Heat Mass Transfer 163, 120492 (2020). https://doi.org/10.1016/j.ijheatmasstransfer.2020.120492

    Article  CAS  Google Scholar 

  14. K. Vaferi, M. Vajdi, S. Nekahi, et al., Ceram. Int. 47, 567 (2021). https://doi.org/10.1016/j.ceramint.2020.08.164

    Article  CAS  Google Scholar 

  15. E. P. Simonenko, N. P. Simonenko, A. N. Gordeev, et al., J. Eur. Ceram. Soc. 40, 1093 (2020). https://doi.org/10.1016/j.jeurceramsoc.2019.11.023

    Article  CAS  Google Scholar 

  16. B. Mohammadzadeh, S. Jung, T. H. Lee, et al., Materials (Basel) 13, 2213 (2020). https://doi.org/10.3390/ma13102213

    Article  CAS  Google Scholar 

  17. R. Mukherjee and B. Basu, Adv. Appl. Ceram. 117, S2 (2018). https://doi.org/10.1080/17436753.2018.1509169

    Article  CAS  Google Scholar 

  18. L. Silvestroni, D. Sciti, L. Zoli, et al., Renew. Energy 133, 1257 (2019). https://doi.org/10.1016/j.renene.2018.08.036

    Article  CAS  Google Scholar 

  19. Q. Lonné, N. Glandut, and P. Lefort, J. Eur. Ceram. Soc. 32, 955 (2012). https://doi.org/10.1016/j.jeurceramsoc.2011.10.027

    Article  CAS  Google Scholar 

  20. C. Musa, R. Licheri, R. Orrù, et al., Sol. Energy 169, 111 (2018). https://doi.org/10.1016/j.solener.2018.04.036

    Article  CAS  Google Scholar 

  21. Y. Qi, K. Jiang, C. Zhou, et al., J. Eur. Ceram. Soc. 41, 2239 (2021). https://doi.org/10.1016/j.jeurceramsoc.2020.11.009

    Article  CAS  Google Scholar 

  22. P. Sengupta, S. S. Sahoo, A. Bhattacharjee, et al., J. Alloys Compd. 850, 156668 (2021). https://doi.org/10.1016/j.jallcom.2020.156668

    Article  CAS  Google Scholar 

  23. E. P. Simonenko, N. P. Simonenko, A. N. Gordeev, et al., J. Eur. Ceram. Soc. 41, 1088 (2021). https://doi.org/10.1016/j.jeurceramsoc.2020.10.001

    Article  CAS  Google Scholar 

  24. E. P. Simonenko, N. P. Simonenko, A. S. Lysenkov, et al., Russ. J. Inorg. Chem. 65, 446 (2020). https://doi.org/10.1134/S0036023620030146

    Article  CAS  Google Scholar 

  25. E. P. Simonenko, N. P. Simonenko, V. G. Sevastyanov, et al., Russ. J. Inorg. Chem. 64, 1697 (2019). https://doi.org/10.1134/S0036023619140079

    Article  CAS  Google Scholar 

  26. M. Shahriari, M. Zakeri, M. Razavi, et al., Int. J. Refract. Met. Hard Mater. 93, 105350 (2020). https://doi.org/10.1016/j.ijrmhm.2020.105350

    Article  CAS  Google Scholar 

  27. V.-H. Nguyen, M. Shahedi Asl, S. A. Delbari, et al., Ceram. Int. 47, 9873 (2020). https://doi.org/10.1016/j.ceramint.2020.12.129

    Article  CAS  Google Scholar 

  28. N. Pourmohammadie Vafa, M. Ghassemi Kakroudi, and M. Shahedi Asl, Ceram. Int. 46, 21533 (2020). https://doi.org/10.1016/j.ceramint.2020.05.255

    Article  CAS  Google Scholar 

  29. E. P. Simonenko, N. P. Simonenko, A. N. Gordeev, et al., Russ. J. Inorg. Chem. 65, 1596 (2020). https://doi.org/10.1134/S0036023620100198

    Article  CAS  Google Scholar 

  30. A. Vinci, L. Zoli, P. Galizia, et al., J. Eur. Ceram. Soc. 40, 5067 (2020). https://doi.org/10.1016/j.jeurceramsoc.2020.06.043

    Article  CAS  Google Scholar 

  31. S. Guo, Adv. Appl. Ceram. 119, 218 (2020). https://doi.org/10.1080/17436753.2020.1755510

    Article  CAS  Google Scholar 

  32. D. Bannykh, A. Utkin, and N. Baklanova, Ceram. Int. 44, 12451 (2018). https://doi.org/10.1016/j.ceramint.2018.04.035

    Article  CAS  Google Scholar 

  33. E. Ghasali and AslM. Shahedi, Ceram. Int. 44, 18078 (2018). https://doi.org/10.1016/j.ceramint.2018.07.011

    Article  CAS  Google Scholar 

  34. A. Purwar, V. Thiruvenkatam, and B. Basu, J. Am. Ceram. Soc. 100, 4860 (2017). https://doi.org/10.1111/jace.15001

    Article  CAS  Google Scholar 

  35. E. P. Simonenko, N. P. Simonenko, V. G. Sevastyanov, et al., Russ. J. Inorg. Chem. 63, 1772 (2018). https://doi.org/10.1134/S003602361814005X

    Article  CAS  Google Scholar 

  36. C. Fang, P. Hu, S. Dong, et al., J. Eur. Ceram. Soc. 39, 2805 (2019). https://doi.org/10.1016/j.jeurceramsoc.2019.03.038

    Article  CAS  Google Scholar 

  37. D. Sciti, L. Zoli, A. Vinci, et al., J. Eur. Ceram. Soc. 41, 3045 (2021). https://doi.org/10.1016/j.jeurceramsoc.2020.05.032

    Article  CAS  Google Scholar 

  38. D. Zhang, P. Hu, S. Dong, et al., Corros. Sci. 161, 108181 (2019). https://doi.org/10.1016/j.corsci.2019.108181

    Article  CAS  Google Scholar 

  39. D. Zhang, P. Hu, J. Feng, et al., Ceram. Int. 45, 5467 (2019). https://doi.org/10.1016/j.ceramint.2018.12.001

    Article  CAS  Google Scholar 

  40. M. Shahedi Asl, Ceram. Int. 43, 15047 (2017). https://doi.org/10.1016/j.ceramint.2017.08.030

    Article  CAS  Google Scholar 

  41. A. Vinci, L. Zoli, E. Landi, et al., Corros. Sci. 123, 129 (2017). https://doi.org/10.1016/j.corsci.2017.04.012

    Article  CAS  Google Scholar 

  42. O. Popov, J. Vleugels, E. Zeynalov, et al., J. Eur. Ceram. Soc. 40, 5012 (2020). https://doi.org/10.1016/j.jeurceramsoc.2020.07.039

    Article  CAS  Google Scholar 

  43. S. Dubey, S. Awasthi, A. Nisar, et al., JOM 72, 2207 (2020). https://doi.org/10.1007/s11837-020-04164-x

    Article  CAS  Google Scholar 

  44. A. Nisar, S. Ariharan, T. Venkateswaran, et al., Carbon 111, 269 (2017). https://doi.org/10.1016/j.carbon.2016.10.002

  45. M. Shahedi Asl, I. Farahbakhsh, and B. Nayebi, Ceram. Int. 42, 1950 (2016). https://doi.org/10.1016/j.ceramint.2015.09.165

    Article  CAS  Google Scholar 

  46. J. Lin, Y. Huang, H. Zhang, et al., Ceram. Int. 41, 15261 (2015). https://doi.org/10.1016/j.ceramint.2015.07.207

    Article  CAS  Google Scholar 

  47. X. Yue, X. Peng, Z. Wei, et al., Materials (Basel) 13, 370 (2020). https://doi.org/10.3390/ma13020370

    Article  CAS  Google Scholar 

  48. A. Wang, H. Liao, T. Zhang, et al., Int. J. Ceram. Eng. Sci. 2, 101 (2020). https://doi.org/10.1002/ces2.10041

    Article  CAS  Google Scholar 

  49. N. Pourmohammadie Vafa, M. Ghassemi Kakroudi, and M. Shahedi Asl, Ceram. Int. 46, 8561 (2020). https://doi.org/10.1016/j.ceramint.2019.12.086

    Article  CAS  Google Scholar 

  50. M. Shahedi Asl, B. Nayebi, A. Motallebzadeh, et al., Composites, Part B 175, 107153 (2019). https://doi.org/10.1016/j.compositesb.2019.107153

  51. H. Li, Y. Wang, Z. Wang, et al., J. Micromech. Microeng. 28, 105022 (2018). https://doi.org/10.1088/1361-6439/aad79b

    Article  CAS  Google Scholar 

  52. Y. Cheng and Y. Liu, Y. An, et al., J. Eur. Ceram. Soc. 40, 2760 (2020). https://doi.org/10.1016/j.jeurceramsoc.2020.03.029

    Article  CAS  Google Scholar 

  53. Y. Cheng, Y. Lyu, S. Zhou, et al., Ceram. Int. 45, 4113 (2019). https://doi.org/10.1016/j.ceramint.2018.10.250

    Article  CAS  Google Scholar 

  54. Y. Cheng, Y. Lyu, W. Han, et al., J. Am. Ceram. Soc. (2018). https://doi.org/10.1111/jace.16068

  55. C. Wei, C. Yu, X. Liu, et al., Ceram. Int. 43, 14493 (2017). https://doi.org/10.1016/j.ceramint.2017.07.063

    Article  CAS  Google Scholar 

  56. B. Zhang, X. Zhang, C. Hong, et al., ACS Appl. Mater. Interfaces 8, 11675 (2016). https://doi.org/10.1021/acsami.6b00822

    Article  CAS  PubMed  Google Scholar 

  57. X. Zhang, Y. An, J. Han, et al., RSC Adv. 5, 47060 (2015). https://doi.org/10.1039/C5RA05922D

    Article  CAS  Google Scholar 

  58. M. Shahedi Asl, M. Ghassemi Kakroudi, Mater. Sci. Eng., A 625, 385 (2015). https://doi.org/10.1016/j.msea.2014.12.028

    Article  CAS  Google Scholar 

  59. M. S. Asl, B. Nayebi, Z. Ahmadi, et al., Ceram. Int. 44, 7334 (2018). https://doi.org/10.1016/j.ceramint.2018.01.214

    Article  CAS  Google Scholar 

  60. Y. An, X. Xu, and K. Gui, Ceram. Int. 42, 14066 (2016). https://doi.org/10.1016/j.ceramint.2016.06.014

    Article  CAS  Google Scholar 

  61. E. P. Simonenko, N. P. Simonenko, A. F. Kolesnikov, et al. J. Eur. Ceram. Soc. (2022).

  62. J. Marschall, D. Pejakovic, W. G. Fahrenholtz, et al., J. Thermophys. Heat Transf. 26, 559 (2012). https://doi.org/10.2514/1.T3798

    Article  CAS  Google Scholar 

  63. E. P. Simonenko, A. N. Gordeev, N. P. Simonenko, et al., Russ. J. Inorg. Chem. 61, 1203 (2016). https://doi.org/10.1134/S003602361610017X

    Article  CAS  Google Scholar 

  64. K. R. Whittle, G. R. Lumpkin, and S. E. Ashbrook, J. Solid State Chem. 179, 512 (2006). https://doi.org/10.1016/j.jssc.2005.11.011

    Article  CAS  Google Scholar 

  65. W. H. Zachariasen, Z. Kristallogr. - Cryst. Mater. 88, 150 (1934). https://doi.org/10.1524/zkri.1934.88.1.150

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The study of the evolution of the microstructure and phase composition of the samples as a result of oxidation was carried out using the equipment of the Center for Shared Use of Physical Methods for Researching Substances and Materials of the Kurnakov Institute RAS, which was supported by the Ministry of Science and Higher Education of the Russian Federation as part of the State Assignment of the Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences.

Funding

The studies of the thermochemical behavior of graphene-doped samples was supported by the Russian Foundation for Basic Research (project No. 20-01-00056). The experiment on a VGU-4 MW plasma torch was in part supported by the Government assignment to the Ishlinskii Institute of Problems of Mechanics (project No. AAAA-A20–120011690135-5: modification of measurement systems).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. P. Simonenko.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by O. Fedorova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Simonenko, E.P., Simonenko, N.P., Kolesnikov, A.F. et al. Modification of HfB2–30% SiC UHTC with Graphene (1 vol %) and Its Influence on the Behavior in a Supersonic Air Jet. Russ. J. Inorg. Chem. 66, 1405–1415 (2021). https://doi.org/10.1134/S003602362109014X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S003602362109014X

Keywords:

Navigation