Skip to main content
Log in

Titania Mesocrystals: Working Surface in Photocatalytic Reactions

  • SYNTHESIS AND PROPERTIES OF INORGANIC COMPOUNDS
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Titania mesocrystals were produced in the presence of polyethylene glycol 400. The doping of the mesocrystals with a small amount of vanadium was shown to increase the photocatalytic activity in comparison with undoped anatase mesocrystals. It was experimentally determined for the first time, using mild ultrasonication of the material, that the photocatalytic reaction of the decomposition of crystal violet occurs throughout the surface of the titania mesocrystals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. L. Chu, Z. Qin, J. Yang, and X. Li, Sci. Rep. 5, 12143 (2015). https://doi.org/10.1038/srep12143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. S. Kozyukhin, A. Sadovnikov, M. Presniakov, et al., Key Eng. Mater. 670, 177 (2015). https://doi.org/10.4028/www.scientific.net/KEM.670.156

    Article  Google Scholar 

  3. A. A. Sadovnikov, A. E. Baranchikov, Y. V. Zubavichus, et al., J. Photochem. Photobiol., A. Chem. 303–304, 36 (2015). https://doi.org/10.1016/j.jphotochem.2015.01.010

    Article  CAS  Google Scholar 

  4. S. Kaushal, H. Kaur, S. Kumar, et al., Russ. J. Inorg. Chem. 65, 616 (2020). https://doi.org/10.1134/S0036023620040087

    Article  CAS  Google Scholar 

  5. D. Zhang and J. Wang, J. Struct. Chem. 59, 1353 (2018). https://doi.org/10.1134/S0022476618060148

    Article  CAS  Google Scholar 

  6. Z. Hong, M. Wei, T. Lan, and G. Cao, Nano Energy 1, 466 (2012). https://doi.org/10.1016/j.nanoen.2012.02.009

    Article  CAS  Google Scholar 

  7. J. Ye, W. Liu, J. Cai, et al., J. Am. Chem. Soc. 133, 933 (2011). https://doi.org/10.1021/ja108205q

    Article  CAS  PubMed  Google Scholar 

  8. O. V. Boytsova, A. A. Sadovnikov, K. E. Yorov, et al., CrystEngComm 19, 3281 (2017). https://doi.org/10.1039/c6ce01985d

    Article  CAS  Google Scholar 

  9. O. V. Boytsova, A. E. Baranchikov, A. D. Yapryntsev, et al., Russ. J. Inorg. Chem. 63, 567 (2018). https://doi.org/10.1134/S0036023618050029

    Article  CAS  Google Scholar 

  10. H. Cölfen and M. Antonietti, Angew. Chem., Int. Ed. Engl. 44, 5576 (2005). https://doi.org/10.1002/anie.200500496

    Article  CAS  Google Scholar 

  11. L. Zhou and P. Obrien, J. Phys. Chem. Lett. 3, 620 (2012). https://doi.org/10.1021/jz2015742

    Article  CAS  PubMed  Google Scholar 

  12. Y. Guo, H. Li, J. Chen, et al., J. Mater. Chem. A 2, 19589 (2014). https://doi.org/10.1039/c4ta05068a

    Article  CAS  Google Scholar 

  13. E. Uchaker and G. Cao, Nano Today 9, 499 (2014). https://doi.org/10.1016/j.nantod.2014.06.004

    Article  CAS  Google Scholar 

  14. Z. Hong, M. Wei, T. Lan, et al., Energy Environ. Sci. 5, 5408 (2012). https://doi.org/10.1039/c1ee02551a

    Article  CAS  Google Scholar 

  15. T. Tachikawa and T. Majima, NPG Asia Mater. 6, 1 (2014). https://doi.org/10.1038/am.2014.21

    Article  CAS  Google Scholar 

  16. P. Zhang, T. Tachikawa, M. Fujitsuka, and T. Majima, ChemSusChem 9, 617 (2016). https://doi.org/10.1002/cssc.201501558

    Article  CAS  PubMed  Google Scholar 

  17. O. Elbanna, P. Zhang, M. Fujitsuka, and T. Majima, Appl. Catal. B 192, 80 (2016). https://doi.org/10.1016/j.apcatb.2016.03.053

    Article  CAS  Google Scholar 

  18. X. Li, J. Wang, Y. Men, and Z. Bian, Appl. Catal. B 187, 115 (2016). https://doi.org/10.1016/j.apcatb.2016.01.034

    Article  CAS  Google Scholar 

  19. X. Yu, X. Fan, Z. Li, and J. Liu, Dalton Trans. 46, 11898 (2017). https://doi.org/10.1039/c7dt02824e

    Article  CAS  PubMed  Google Scholar 

  20. J. C. S. Wu and C. H. Chen, J. Photochem. Photobiol., A 163, 509 (2004). https://doi.org/10.1016/j.jphotochem.2004.02.007

    Article  CAS  Google Scholar 

  21. M. Asgharinezhad, A. Eshaghi, and A. Arab, Optik 127, 8130 (2016). https://doi.org/10.1016/j.ijleo.2016.06.008

    Article  CAS  Google Scholar 

  22. M. M. Mohamed and M. M. Al-Esaimi, J. Mol. Catal. A: Chem. 255, 53 (2006). https://doi.org/10.1016/j.molcata.2006.03.071

    Article  CAS  Google Scholar 

  23. D. Masih, H. Yoshitake, and Y. Izumi, Appl. Catal., A 325, 276 (2007). https://doi.org/10.1016/j.apcata.2007.02.037

  24. G. Rossi, L. Pasquini, D. Catone, et al., Appl. Catal., B 237, 603 (2018). https://doi.org/10.1016/j.apcatb.2018.06.011

    Article  CAS  Google Scholar 

  25. W.-C. Lin and Y.-J. Lin, Environ. Eng. Sci. 29, 447 (2012). https://doi.org/10.1089/ees.2010.0350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. R.-an Doong, P.-Y. Chang, and C.-H. Huang, J. Non. Cryst. Solids 355, 2302 (2009). https://doi.org/10.1016/j.jnoncrysol.2009.07.017

  27. L. Zhou, D. Smyth-Boyle, and P. O' Brien, J. Am. Chem. Soc. 130, 1309 (2008). https://doi.org/10.1021/ja076187c

    Article  CAS  PubMed  Google Scholar 

  28. L. Zhou and P. O' Brien, Phys. Status Solidi 205, 2317 (2008). https://doi.org/10.1002/pssa.200879447

    Article  CAS  Google Scholar 

  29. O. Boytsova, I. Dovgaliuk, D. Chernyshov, et al., J. Appl. Crystallogr. 52, 23 (2019). https://doi.org/10.1107/S1600576718016606

    Article  CAS  Google Scholar 

  30. M. Motola, L. Satrapinskyy, M. Caplovicova, et al., Appl. Surf. Sci. 434, 1257 (2018). https://doi.org/10.1016/j.apsusc.2017.11.253

    Article  CAS  Google Scholar 

  31. B. Wang, G. Zhang, X. Leng, et al., J. Hazard. Mater. 285, 212 (2015). https://doi.org/10.1016/j.jhazmat.2014.11.031

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation (project no. 18–73–10212) using equipment of the Center for Shared Use of Physical Methods of Investigation, Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Moscow, Russia.

The XPS studies were performed using equipment of the Center for Shared Facilities “Center for Physical and Physicochemical Methods of Analysis and Investigation of Properties and Characteristics of Surface, Nanostructures, Materials, and Articles,” Udmurt Federal Research Center, Ural Branch, Russian Academy of Sciences, Izhevsk, Russia, and were supported by the Ministry of Education and Science under the Federal Purpose Program “Research and Design in Top-Priority Directions of Development of the Science and Technology Sector in Russia for 2014–2020” (Unique Project Identifier RFMEFI62119X0035).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. V. Boytsova.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by V. Glyanchenko

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sadovnikov, A.A., Nechaev, E.G., Beltiukov, A.N. et al. Titania Mesocrystals: Working Surface in Photocatalytic Reactions. Russ. J. Inorg. Chem. 66, 460–467 (2021). https://doi.org/10.1134/S0036023621040197

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023621040197

Keywords:

Navigation